151 research outputs found

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks

    Improving Scalability of Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in New Generation Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00354-013-0302-4[Abstract] The execution times of large-scale parallel applications on nowadays multi/many-core systems are usually longer than the mean time between failures. Therefore, parallel applications must tolerate hardware failures to ensure that not all computation done is lost on machine failures. Checkpointing and rollback recovery is one of the most popular techniques to implement fault-tolerant applications. However, checkpointing parallel applications is expensive in terms of computing time, network utilization and storage resources. Thus, current checkpoint-recovery techniques should minimize these costs in order to be useful for large scale systems. In this paper three different and complementary techniques to reduce the size of the checkpoints generated by application-level checkpointing are proposed and implemented. Detailed experimental results obtained on a multicore cluster show the effectiveness of the proposed methods to reduce checkpointing cost.Ministerio de Ciencia e Innovación; TIN2010-16735Galicia. Consellería de Economía e Industria; 10PXIB105180P

    Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems

    Get PDF
    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR

    CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications

    Get PDF
    This is the peer reviewed version of the following article: Rodríguez, G. , Martín, M. J., González, P. , Touriño, J. and Doallo, R. (2010), CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications. Concurrency Computat.: Pract. Exper., 22: 749-766. doi:10.1002/cpe.1541, which has been published in final form at https://doi.org/10.1002/cpe.1541. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] With the evolution of high‐performance computing toward heterogeneous, massively parallel systems, parallel applications have developed new checkpoint and restart necessities. Whether due to a failure in the execution or to a migration of the application processes to different machines, checkpointing tools must be able to operate in heterogeneous environments. However, some of the data manipulated by a parallel application are not truly portable. Examples of these include opaque state (e.g. data structures for communications support) or diversity of interfaces for a single feature (e.g. communications, I/O). Directly manipulating the underlying ad hoc representations renders checkpointing tools unable to work on different environments. Portable checkpointers usually work around portability issues at the cost of transparency: the user must provide information such as what data need to be stored, where to store them, or where to checkpoint. CPPC (ComPiler for Portable Checkpointing) is a checkpointing tool designed to feature both portability and transparency. It is made up of a library and a compiler. The CPPC library contains routines for variable level checkpointing, using portable code and protocols. The CPPC compiler helps to achieve transparency by relieving the user from time‐consuming tasks, such as data flow and communications analyses and adding instrumentation code. This paper covers both the operation of the CPPC library and its compiler support. Experimental results using benchmarks and large‐scale real applications are included, demonstrating usability, efficiency, and portability.Miniesterio de Educación y Ciencia; TIN2007‐67537‐C03Xunta de Galicia; 2006/

    A survey of checkpointing algorithms for parallel and distributed computers

    Get PDF
    Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. Checkpointing is the process of saving the status information. This paper surveys the algorithms which have been reported in the literature for checkpointing parallel/distributed systems. It has been observed that most of the algorithms published for checkpointing in message passing systems are based on the seminal article by Chandy and Lamport. A large number of articles have been published in this area by relaxing the assumptions made in this paper and by extending it to minimise the overheads of coordination and context saving. Checkpointing for shared memory systems primarily extend cache coherence protocols to maintain a consistent memory. All of them assume that the main memory is safe for storing the context. Recently algorithms have been published for distributed shared memory systems, which extend the cache coherence protocols used in shared memory systems. They however also include methods for storing the status of distributed memory in stable storage. Most of the algorithms assume that there is no knowledge about the programs being executed. It is however felt that in development of parallel programs the user has to do a fair amount of work in distributing tasks and this information can be effectively used to simplify checkpointing and rollback recovery

    Reducing the overhead of an MPI application-level migration approach

    Get PDF
    [Abstract] Process migration provides many benefits for parallel environments including dynamic load balance, data access locality, or fault tolerance. This work proposes a solution that reduces the memory and I/O overhead in an application-level checkpoint-based migration approach. The proposal splits the checkpoint files in order to overlap the writing of the state in the terminating processes with the read and restarting operation in the newly spawned processes. It has been tested using the MPI NAS Parallel Benchmarks, showing encouraging results, both in terms of memory consumption and I/O migration times.Ministerio de Economía y Competitividad; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05

    Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer

    Get PDF
    Multiple instruction rollback (MIR) is a technique to provide rapid recovery from transient processor failures and was implemented in hardware by researchers and slow in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs were also developed which remove rollback data hazards directly with data flow manipulations, thus eliminating the need for most data redundancy hardware. Compiler-assisted techniques to achieve multiple instruction rollback recovery are addressed. It is observed that data some hazards resulting from instruction rollback can be resolved more efficiently by providing hardware redundancy while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations were conducted which indicate improved efficiency over previous hardware-based and compiler-based schemes. Various enhancements to the compiler transformations and to the data redundancy hardware developed for the compiler-assisted MIR scheme are described and evaluated. The final topic deals with the application of compiler-assisted MIR techniques to aid in exception repair and branch repair in a speculative execution architecture

    Checkpointing of parallel applications in a Grid environment

    Get PDF
    The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable resources making it very exposed to failures. The environment is unreliable because it is geographically dispersed involving multiple autonomous administrative domains and it is composed of a large number of components. Examples of failures in the Grid environment can be: application crash, Grid node crash, network failures, and Grid system component failures. These types of failures can affect the execution of parallel/distributed application in the Grid environment and so, protections against these faults are crucial. Therefore, it is essential to develop efficient fault tolerant mechanisms to allow users to successfully execute Grid applications. One of the research challenges in Grid computing is to be able to develop a fault tolerant solution that will ensure Grid applications are executed reliably with minimum overhead incurred. While checkpointing is the most common method to achieve fault tolerance, there is still a lot of work to be done to improve the efficiency of the mechanism. This thesis provides an in-depth description of a novel solution for checkpointing parallel applications executed on a Grid. The checkpointing mechanism implemented allows to checkpoint an application at regions where there is no interprocess communication involved and therefore reducing the checkpointing overhead and checkpoint size
    corecore