32,022 research outputs found

    CAD-based robotics

    Get PDF
    Journal ArticleWe describe an approach which facilitates and makes explicit the organization of the knowledge necessary to map robotic system requirements onto an appropriate assembly of algorithms, processors, sensor, and actuators. In order to achieve this mapping, several kinds of knowledge are needed. In this paper, we describe a system under development which exploits the Computer Aided Design (CAD) database in order to synthesize

    Direct off-line robot programming via a common CAD package

    Get PDF
    This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD drawing, how to automatically extract such motion data from the drawing, make the mapping of data from the virtual (CAD model) to the real environment and the process of automatic generation of robot paths/programs. In summary, this study aims to present a novel CAD-based robot programming system accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation tasks show the effectiveness and versatility of the proposed approach

    CAD-based approach for identification of elasto-static parameters of robotic manipulators

    Get PDF
    The paper presents an approach for the identification of elasto-static parameters of a robotic manipulator using the virtual experiments in a CAD environment. It is based on the numerical processing of the data extracted from the finite element analysis results, which are obtained for isolated manipulator links. This approach allows to obtain the desired stiffness matrices taking into account the complex shape of the links, couplings between rotational/translational deflections and particularities of the joints connecting adjacent links. These matrices are integral parts of the manipulator lumped stiffness model that are widely used in robotics due to its high computational efficiency. To improve the identification accuracy, recommendations for optimal settings of the virtual experiments are given, as well as relevant statistical processing techniques are proposed. Efficiency of the developed approach is confirmed by a simulation study that shows that the accuracy in evaluating the stiffness matrix elements is about 0.1%.Comment: arXiv admin note: substantial text overlap with arXiv:0909.146
    corecore