14 research outputs found

    Patient-specific modelling of the cerebral circulation for aneurysm risk assessment

    Get PDF
    Cerebral aneurysms are localised pathological dilatations of cerebral arteries, most commonly found in the circle of Willis. Although not all aneurysms are unstable, the major clinical concern involved is the risk of rupture. High morbidity and mortality rates are associated with the haemorrhage resulting from rupture. New indicators of aneurysm stability are sought, since current indicators based on morphological factors have been shown to be unreliable. Haemodynamical factors are known to be relevant in vascular wall remodelling, and therefore believed to play an important role in aneurysmdevelopment and stability. Studies suggest that intra-aneurysmal wall shear stress and flow patterns, for example, are candidate parameters in aneurysm stability assessment. These factors can be estimated if the 3D patient-specific intra-aneurysmal velocity is known, which can be obtained via a combination of in vivo measurements and computational fluid dynamics models. The main determinants of the velocity field are the vascular geometry and flow through this geometry. Over the last decade the extraction of the vascular geometry has become well established. More recently, there has been a shift of attention towards extracting boundary conditions for the 3D vascular segment of interest. The aim of this research is to improve the reliability of the model-based representation of the velocity field in the aneurysmal sac. To this end, a protocol is proposed such that patient-specific boundary conditions for the 3D segment of interest can be estimated without the need for added invasive procedures. This is facilitated by a 1D wave propagation model based on patient-specific geometry and boundary conditions measured non-invasively in more accessible regions. Such a protocol offers improved statistical reliability owing to the increased number of patients that can participate in studies aiming to identify parameters of interest in aneurysm stability assessment. In chapter 2 the intra-aneurysmal velocity field in an idealised aneurysm model is validated with particle image velocimetry experiments, after which the flow patterns are evaluated using a vortex identification method. Chapter 3 describes a 1D model wave propagation model of the cerebral circulation with a patient-specific vascular geometry. The resulting flow pulses at the boundaries of the 3D segment of interest are compared to those obtained with a patient-generic geometry. The influence of these different boundary conditions on the 3D intra-aneurysmal velocity field is evaluated in chapter 4 by prescribing the end-diastolic flows extracted from the 1D models. In order to measure blood flow with videodensitometric methods, an injection of contrast agent is required. The effect of this injection on the flow of interest is assessed in chapter 5. In chapter 6, pressure measurements in the internal carotid are used to evaluate the variability of pressure waveform and its effect on the boundary conditions for the 1D model. Finally, a protocol for full patient-specific modelling is discussed in chapter 7

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Quantitative image analysis in cardiac CT angiography

    Get PDF

    Quantitative image analysis in cardiac CT angiography

    Get PDF

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF
    corecore