130 research outputs found

    Haptic Interaction with 3D oriented point clouds on the GPU

    Get PDF
    Real-time point-based rendering and interaction with virtual objects is gaining popularity and importance as di�erent haptic devices and technologies increasingly provide the basis for realistic interaction. Haptic Interaction is being used for a wide range of applications such as medical training, remote robot operators, tactile displays and video games. Virtual object visualization and interaction using haptic devices is the main focus; this process involves several steps such as: Data Acquisition, Graphic Rendering, Haptic Interaction and Data Modi�cation. This work presents a framework for Haptic Interaction using the GPU as a hardware accelerator, and includes an approach for enabling the modi�cation of data during interaction. The results demonstrate the limits and capabilities of these techniques in the context of volume rendering for haptic applications. Also, the use of dynamic parallelism as a technique to scale the number of threads needed from the accelerator according to the interaction requirements is studied allowing the editing of data sets of up to one million points at interactive haptic frame rates

    Design and implementation of 3D buildings integration for a Webgl-Based Virtual Globe: a case study of Valencian Cadastre and Fide Building Mode

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Since nowadays Web applications are increasingly providing plenty of creative and interesting services relying on new standards and more powerful computers, it becomes important to create similar applications, to process and visualize geographic data taking advantage of such groundings. In this context, it results interesting to develop new Web-based geo-processing based on a 3D data representation, exploiting the recent WebGL graphic specification from a client-side point of view. This research explains the novel way in which whole Valencian cadastre was analyzed, processed and finally represented into a WebGL-based virtual globe. These improvements provide end-users firstly, an optimization of computer graphics performance, by natively accessing to graphics instructions; and secondly a functional data management and representation for the present and forthcoming geo-processing Web-based platform

    Visual Techniques for Geological Fieldwork Using Mobile Devices

    Get PDF
    Visual techniques in general and 3D visualisation in particular have seen considerable adoption within the last 30 years in the geosciences and geology. Techniques such as volume visualisation, for analysing subsurface processes, and photo-coloured LiDAR point-based rendering, to digitally explore rock exposures at the earth’s surface, were applied within geology as one of the first adopting branches of science. A large amount of digital, geological surface- and volume data is nowadays available to desktop-based workflows for geological applications such as hydrocarbon reservoir exploration, groundwater modelling, CO2 sequestration and, in the future, geothermal energy planning. On the other hand, the analysis and data collection during fieldwork has yet to embrace this ”digital revolution”: sedimentary logs, geological maps and stratigraphic sketches are still captured in each geologist’s individual fieldbook, and physical rocks samples are still transported to the lab for subsequent analysis. Is this still necessary, or are there extended digital means of data collection and exploration in the field ? Are modern digital interpretation techniques accurate and intuitive enough to relevantly support fieldwork in geology and other geoscience disciplines ? This dissertation aims to address these questions and, by doing so, close the technological gap between geological fieldwork and office workflows in geology. The emergence of mobile devices and their vast array of physical sensors, combined with touch-based user interfaces, high-resolution screens and digital cameras provide a possible digital platform that can be used by field geologists. Their ubiquitous availability increases the chances to adopt digital workflows in the field without additional, expensive equipment. The use of 3D data on mobile devices in the field is furthered by the availability of 3D digital outcrop models and the increasing ease of their acquisition. This dissertation assesses the prospects of adopting 3D visual techniques and mobile devices within field geology. The research of this dissertation uses previously acquired and processed digital outcrop models in the form of textured surfaces from optical remote sensing and photogrammetry. The scientific papers in this thesis present visual techniques and algorithms to map outcrop photographs in the field directly onto the surface models. Automatic mapping allows the projection of photo interpretations of stratigraphy and sedimentary facies on the 3D textured surface while providing the domain expert with simple-touse, intuitive tools for the photo interpretation itself. The developed visual approach, combining insight from all across the computer sciences dealing with visual information, merits into the mobile device Geological Registration and Interpretation Toolset (GRIT) app, which is assessed on an outcrop analogue study of the Saltwick Formation exposed at Whitby, North Yorkshire, UK. Although being applicable to a diversity of study scenarios within petroleum geology and the geosciences, the particular target application of the visual techniques is to easily provide field-based outcrop interpretations for subsequent construction of training images for multiple point statistics reservoir modelling, as envisaged within the VOM2MPS project. Despite the success and applicability of the visual approach, numerous drawbacks and probable future extensions are discussed in the thesis based on the conducted studies. Apart from elaborating on more obvious limitations originating from the use of mobile devices and their limited computing capabilities and sensor accuracies, a major contribution of this thesis is the careful analysis of conceptual drawbacks of established procedures in modelling, representing, constructing and disseminating the available surface geometry. A more mathematically-accurate geometric description of the underlying algebraic surfaces yields improvements and future applications unaddressed within the literature of geology and the computational geosciences to this date. Also, future extensions to the visual techniques proposed in this thesis allow for expanded analysis, 3D exploration and improved geological subsurface modelling in general.publishedVersio

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専
    corecore