22 research outputs found

    Hybridizable compatible finite element discretizations for numerical weather prediction: implementation and analysis

    Get PDF
    There is a current explosion of interest in new numerical methods for atmospheric modeling. A driving force behind this is the need to be able to simulate, with high efficiency, large-scale geophysical flows on increasingly more parallel computer systems. Many current operational models, including that of the UK Met Office, depend on orthogonal meshes, such as the latitude-longitude grid. This facilitates the development of finite difference discretizations with favorable numerical properties. However, such methods suffer from the ``pole problem," which prohibits the model to make efficient use of a large number of computing processors due to excessive concentration of grid-points at the poles. Recently developed finite element discretizations, known as ``compatible" finite elements, avoid this issue while maintaining the key numerical properties essential for accurate geophysical simulations. Moreover, these properties can be obtained on arbitrary, non-orthogonal meshes. However, the efficient solution of the resulting discrete systems depend on transforming the mixed velocity-pressure (or velocity-pressure-buoyancy) system into an elliptic problem for the pressure. This is not so straightforward within the compatible finite element framework due to inter-element coupling. This thesis supports the proposition that systems arising from compatible finite element discretizations can be solved efficiently using a technique known as ``hybridization." Hybridization removes inter-element coupling while maintaining the desired numerical properties. This permits the construction of sparse, elliptic problems, for which fast solver algorithms are known, using localized algebra. We first introduce the technique for compatible finite element discretizations of simplified atmospheric models. We then develop a general software abstraction for the rapid implementation and composition of hybridization methods, with an emphasis on preconditioning. Finally, we extend the technique for a new compatible method for the full, compressible atmospheric equations used in operational models.Open Acces

    Space-time Methods for Time-dependent Partial Differential Equations

    Get PDF
    Modern discretizations of time-dependent PDEs consider the full problem in the space-time cylinder and aim to overcome limitations of classical approaches such as the method of lines (first discretize in space and then solve the resulting ODE) and the Rothe method (first discretize in time and then solve the PDE). A main advantage of a holistic space-time method is the direct access to space-time adaptivity and to the backward problem (required for the dual problem in optimization or error control). Moreover, this allows for parallel solution strategies simultaneously in time and space. Several space-time concepts where proposed (different conforming and nonconforming space-time finite elements, the parareal method, wavefront relaxation etc.) but this topic has become a rapidly growing field in numerical analysis and scientific computing. In this workshop the focus is the development of adaptive and flexible space-time discretization methods for solving parabolic and hyperbolic space-time partial differential equations

    Large-scale tree-based unfitted finite elements for metal additive manufacturing

    Get PDF
    This thesis addresses large-scale numerical simulations of partial differential equations posed on evolving geometries. Our target application is the simulation of metal additive manufacturing (or 3D printing) with powder-bed fusion methods, such as Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) or Electron-Beam Melting (EBM). The simulation of metal additive manufacturing processes is a remarkable computational challenge, because processes are characterised by multiple scales in space and time and multiple complex physics that occur in intricate three-dimensional growing-in-time geometries. Only the synergy of advanced numerical algorithms and high-performance scientific computing tools can fully resolve, in the short run, the simulation needs in the area. The main goal of this Thesis is to design a a novel highly-scalable numerical framework with multi-resolution capability in arbitrarily complex evolving geometries. To this end, the framework is built by combining three computational tools: (1) parallel mesh generation and adaptation with forest-of-trees meshes, (2) robust unfitted finite element methods and (3) parallel finite element modelling of the geometry evolution in time. Our numerical research is driven by several limitations and open questions in the state-of-the-art of the three aforementioned areas, which are vital to achieve our main objective. All our developments are deployed with high-end distributed-memory implementations in the large-scale open-source software project FEMPAR. In considering our target application, (4) temporal and spatial model reduction strategies for thermal finite element models are investigated. They are coupled to our new large-scale computational framework to simplify optimisation of the manufacturing process. The contributions of this Thesis span the four ingredients above. Current understanding of (1) is substantially improved with rigorous proofs of the computational benefits of the 2:1 k-balance (ease of parallel implementation and high-scalability) and the minimum requirements a parallel tree-based mesh must fulfil to yield correct parallel finite element solvers atop them. Concerning (2), a robust, optimal and scalable formulation of the aggregated unfitted finite element method is proposed on parallel tree-based meshes for elliptic problems with unfitted external contour or unfitted interfaces. To the author鈥檚 best knowledge, this marks the first time techniques (1) and (2) are brought together. After enhancing (1)+(2) with a novel parallel approach for (3), the resulting framework is able to mitigate a major performance bottleneck in large-scale simulations of metal additive manufacturing processes by powder-bed fusion: scalable adaptive (re)meshing in arbitrarily complex geometries that grow in time. Along the development of this Thesis, our application problem (4) is investigated in two joint collaborations with the Monash Centre for Additive Manufacturing and Monash University in Melbourne, Australia. The first contribution is an experimentally-supported thorough numerical assessment of time-lumping methods, the second one is a novel experimentally-validated formulation of a new physics-based thermal contact model, accounting for thermal inertia and suitable for model localisation, the so-called virtual domain approximation. By efficiently exploiting high-performance computing resources, our new computational framework enables large-scale finite element analysis of metal additive manufacturing processes, with increased fidelity of predictions and dramatical reductions of computing times. It can also be combined with the proposed model reductions for fast thermal optimisation of the manufacturing process. These tools open the path to accelerate the understanding of the process-to-performance link and digital product design and certification in metal additive manufacturing, two milestones that are vital to exploit the technology for mass-production.Aquesta tesi tracta la simulaci贸 a gran escala d'equacions en derivades parcials sobre geometries variables. L'aplicaci贸 principal 茅s la simulaci贸 de procesos de fabricaci贸 additiva (o impressi贸 3D) amb metalls i per m猫todes de fusi贸 de llit de pols, com ara Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) o Electron-Beam Melting (EBM). La simulaci贸 d'aquests processos 茅s un repte computacional excepcional, perqu猫 els processos estan caracteritzats per m煤ltiples escales espaitemporals i m煤ltiples f铆siques que tenen lloc sobre geometries tridimensionals complicades que creixen en el temps. La sin猫rgia entre algorismes num猫rics avan莽ats i eines de computaci贸 cient铆fica d'alt rendiment 茅s la 煤nica via per resoldre completament i a curt termini les necessitats en simulaci贸 d'aquesta 脿rea. El principal objectiu d'aquesta tesi 茅s dissenyar un nou marc num猫ric escalable de simulaci贸 amb capacitat de multiresoluci贸 en geometries complexes i variables. El nou marc es construeix unint tres eines computacionals: (1) mallat paral路lel i adaptatiu amb malles de boscs d'arbre, (2) m猫todes d'elements finits immersos robustos i (3) modelitzaci贸 en paral路lel amb elements finits de geometries que creixen en el temps. Algunes limitacions i problemes oberts en l'estat de l'art, que s贸n claus per aconseguir el nostre objectiu, guien la nostra recerca. Tots els desenvolupaments s'implementen en arquitectures de mem貌ria distribu茂da amb el programari d'acc茅s obert FEMPAR. Quant al problema d'aplicaci贸, (4) s'investiguen models redu茂ts en espai i temps per models t猫rmics del proc茅s. Aquests models redu茂ts s'acoplen al nostre marc computacional per simplificar l'optimitzaci贸 del proc茅s. Les contribucions d'aquesta tesi abasten els quatre punts de dalt. L'estat de l'art de (1) es millora substancialment amb proves riguroses dels beneficis computacionals del 2:1 balancejat (f脿cil paral路lelitzaci贸 i alta escalabilitat), aix铆 com dels requisits m铆nims que aquest tipus de mallat han de complir per garantir que els espais d'elements finits que s'hi defineixin estiguin ben posats. Quant a (2), s'ha formulat un m猫tode robust, 貌ptim i escalable per agregaci贸 per problemes el路l铆ptics amb contorn o interface immerses. Despr茅s d'augmentar (1)+(2) amb un nova estrat猫gia paral路lela per (3), el marc de simulaci贸 resultant mitiga de manera efectiva el principal coll d'ampolla en la simulaci贸 de processos de fabricaci贸 additiva en llits de pols de metall: adaptivitat i remallat escalable en geometries complexes que creixen en el temps. Durant el desenvolupament de la tesi, es col路labora amb el Monash Centre for Additive Manufacturing i la Universitat de Monash de Melbourne, Austr脿lia, per investigar el problema d'aplicaci贸. En primer lloc, es fa una an脿lisi experimental i num猫rica exhaustiva dels m猫todes d'aggregaci贸 temporal. En segon lloc, es proposa i valida experimental una nova formulaci贸 de contacte t猫rmic que t茅 en compte la in猫rcia t猫rmica i 茅s adequat per a localitzar el model, l'anomenada aproximaci贸 per dominis virtuals. Mitjan莽ant l'煤s eficient de recursos computacionals d'alt rendiment, el nostre nou marc computacional fa possible l'an脿lisi d'elements finits a gran escala dels processos de fabricaci贸 additiva amb metalls, amb augment de la fidelitat de les prediccions i reduccions significatives de temps de computaci贸. Aix铆 mateix, es pot combinar amb els models redu茂ts que es proposen per l'optimitzaci贸 t猫rmica del proc茅s de fabricaci贸. Aquestes eines contribueixen a accelerar la comprensi贸 del lligam proc茅s-rendiment i la digitalitzaci贸 del disseny i certificaci贸 de productes en fabricaci贸 additiva per metalls, dues fites crucials per explotar la tecnologia en producci贸 en massa.Postprint (published version

    Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear PDEs

    Get PDF
    In this thesis we study so-called two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of quasilinear partial differential equations. The two-grid method is constructed by first solving the nonlinear system of equations stemming from the discontinuous Galerkin finite element method on a coarse mesh partition; then, this coarse solution is used to linearise the underlying problem so that only a linear system is solved on a finer mesh. Solving the complex nonlinear problem on a coarse enough mesh should reduce computational complexity without adversely affecting the numerical error. We first focus on the a priori and a posteriori error estimation for a scalar second-order quasilinear elliptic PDEs of strongly monotone type with respect to a mesh-dependent energy norm. We then devise an hp-adaptive mesh refinement algorithm, using the a posteriori error estimator, to automatically refine both the coarse and fine meshes present in the two-grid method. We then perform numerical experiments to validate the algorithm and demonstrate the improvements from utilising a two-grid method in comparison to a standard (single-grid) approach. We also consider deviation of the energy norm based a priori and a posteriori error bounds for both the standard and two-grid discretisations of a quasi-Newtonian fluid flow problem of strongly monotone type. Numerical experiments are performed to validate these bounds. We finally consider the dual weighted residual based a posteriori error estimate for both the second-order quasilinear elliptic PDE and the quasi-Newtonian fluid flow problem with generic nonlinearities
    corecore