11,645 research outputs found

    Visual and eye movement functions of the posterior parietal cortex

    Get PDF
    Lesions of the posterior parietal area in humans produce interesting spatial-perceptual and spatial-behavioral deficits. Among the more important deficits observed are loss of spatial memories, problems representing spatial relations in models or drawings, disturbances in the spatial distribution of attention, and the inability to localize visual targets. Posterior parietal lesions in nonhuman primates also produce visual spatial deficits not unlike those found in humans. Mountcastle and his colleagues were the first to explore this area, using single cell recording techniques in behaving monkeys over 13 years ago. Subsequent work by Mountcastle, Lynch and colleagues, Hyvarinen and colleagues, Robinson, Goldberg & Stanton, and Sakata and colleagues during the period of the late 1970s and early 1980s provided an informational and conceptual foundation for exploration of this fascinating area of the brain. Four new directions of research that are presently being explored from this foundation are reviewed in this article. 1. The anatomical and functional organization of the inferior parietal lobule is presently being investigated with neuroanatomical tracing and single cell recording techniques. This area is now known to be comprised of at least four separate cortical fields. 2. Neural mechanisms for spatial constancy are being explored. In area 7a information about eye position is found to be integrated with visual inputs to produce representations of visual space that are head-centered (the meaning of a head-centered coordinate system is explained on p. 13). 3. The role of the posterior parietal cortex, and the pathways projecting into this region, in processing information about motion in the visual world is under investigation. Visual areas within the posterior parietal cortex may play a role in extracting higher level motion information including the perception of structure-from-motion. 4. A previously unexplored area within the intraparietal sulcus has been found whose cells hold a representation in memory of planned eye movements. Special experimental protocols have shown that these cells code the direction and amplitude of intended movements in motor coordinates and suggest that this area plays a role in motor planning

    A scalable method for parallelizing sampling-based motion planning algorithms

    Full text link
    Abstract—This paper describes a scalable method for paral-lelizing sampling-based motion planning algorithms. It subdi-vides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequen-tial) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. I

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement

    Get PDF
    Attention is known to play a key role in perception, including action selection, object recognition and memory. Despite findings revealing competitive interactions among cell populations, attention remains difficult to explain. The central purpose of this paper is to link up a large number of findings in a single computational approach. Our simulation results suggest that attention can be well explained on a network level involving many areas of the brain. We argue that attention is an emergent phenomenon that arises from reentry and competitive interactions. We hypothesize that guided visual search requires the usage of an object-specific template in prefrontal cortex to sensitize V4 and IT cells whose preferred stimuli match the target template. This induces a feature-specific bias and provides guidance for eye movements. Prior to an eye movement, a spatially organized reentry from occulomotor centers, specifically the movement cells of the frontal eye field, occurs and modulates the gain of V4 and IT cells. The processes involved are elucidated by quantitatively comparing the time course of simulated neural activity with experimental data. Using visual search tasks as an example, we provide clear and empirically testable predictions for the participation of IT, V4 and the frontal eye field in attention. Finally, we explain a possible physiological mechanism that can lead to non-flat search slopes as the result of a slow, parallel discrimination process

    Adaptive neighbor connection for PRMs: A natural fit for heterogeneous environments and parallelism

    Full text link

    Motion Planning via Manifold Samples

    Full text link
    We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with practical, considerably simpler sampling-based approaches that are appropriate for higher dimensions. In order to facilitate the transfer of advanced geometric algorithms into practical use, we suggest taking samples that are entire low-dimensional manifolds of the configuration space that capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms for analysis of low-dimensional manifolds then provide powerful primitive operations. The modular design of the framework enables independent optimization of each modular component. Indeed, we have developed, implemented and optimized a primitive operation for complete and exact combinatorial analysis of a certain set of manifolds, using arrangements of curves of rational functions and concepts of generic programming. This in turn enabled us to implement our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. We demonstrate that the integration of several carefully engineered components leads to significant speedup over the popular PRM sampling-based algorithm, which represents the more simplistic approach that is prevalent in practice. We foresee possible extensions of our framework to solving high-dimensional problems beyond motion planning.Comment: 18 page
    • …
    corecore