8,590 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Optimization Methods Applied to Power Systems â…ˇ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Application of decision trees and multivariate regression trees in design and optimization

    Get PDF
    Induction of decision trees and regression trees is a powerful technique not only for performing ordinary classification and regression analysis but also for discovering the often complex knowledge which describes the input-output behavior of a learning system in qualitative forms;In the area of classification (discrimination analysis), a new technique called IDea is presented for performing incremental learning with decision trees. It is demonstrated that IDea\u27s incremental learning can greatly reduce the spatial complexity of a given set of training examples. Furthermore, it is shown that this reduction in complexity can also be used as an effective tool for improving the learning efficiency of other types of inductive learners such as standard backpropagation neural networks;In the area of regression analysis, a new methodology for performing multiobjective optimization has been developed. Specifically, we demonstrate that muitiple-objective optimization through induction of multivariate regression trees is a powerful alternative to the conventional vector optimization techniques. Furthermore, in an attempt to investigate the effect of various types of splitting rules on the overall performance of the optimizing system, we present a tree partitioning algorithm which utilizes a number of techniques derived from diverse fields of statistics and fuzzy logic. These include: two multivariate statistical approaches based on dispersion matrices, an information-theoretic measure of covariance complexity which is typically used for obtaining multivariate linear models, two newly-formulated fuzzy splitting rules based on Pearson\u27s parametric and Kendall\u27s nonparametric measures of association, Bellman and Zadeh\u27s fuzzy decision-maximizing approach within an inductive framework, and finally, the multidimensional extension of a widely-used fuzzy entropy measure. The advantages of this new approach to optimization are highlighted by presenting three examples which respectively deal with design of a three-bar truss, a beam, and an electric discharge machining (EDM) process

    Comparative Uncertainty Visualization for High-Level Analysis of Scalar- and Vector-Valued Ensembles

    Get PDF
    With this thesis, I contribute to the research field of uncertainty visualization, considering parameter dependencies in multi valued fields and the uncertainty of automated data analysis. Like uncertainty visualization in general, both of these fields are becoming more and more important due to increasing computational power, growing importance and availability of complex models and collected data, and progress in artificial intelligence. I contribute in the following application areas: Uncertain Topology of Scalar Field Ensembles. The generalization of topology-based visualizations to multi valued data involves many challenges. An example is the comparative visualization of multiple contour trees, complicated by the random nature of prevalent contour tree layout algorithms. I present a novel approach for the comparative visualization of contour trees - the Fuzzy Contour Tree. Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking features in time-dependent scalar fields is an active field of research, where most approaches rely on the comparison of consecutive time steps. I created a more holistic visualization for time-varying scalar field topology by adapting Fuzzy Contour Trees to the time-dependent setting. Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive and well-known visualization of uncertain trajectories in vector field ensembles. For large ensembles, visitation maps are not applicable, or only with extensive time requirements. I developed Visitation Graphs, a new representation and data reduction method for vector field ensembles that can be calculated in situ and is an optimal basis for the efficient generation of visitation maps. This is accomplished by bringing forward calculation times to the pre-processing. Visually Supported Anomaly Detection in Cyber Security. Numerous cyber attacks and the increasing complexity of networks and their protection necessitate the application of automated data analysis in cyber security. Due to uncertainty in automated anomaly detection, the results need to be communicated to analysts to ensure appropriate reactions. I introduce a visualization system combining device readings and anomaly detection results: the Security in Process System. To further support analysts I developed an application agnostic framework that supports the integration of knowledge assistance and applied it to the Security in Process System. I present this Knowledge Rocks Framework, its application and the results of evaluations for both, the original and the knowledge assisted Security in Process System. For all presented systems, I provide implementation details, illustrations and applications

    Matching records in multiple databases using a hybridization of several technologies.

    Get PDF
    A major problem with integrating information from multiple databases is that the same data objects can exist in inconsistent data formats across databases and a variety of attribute variations, making it difficult to identify matching objects using exact string matching. In this research, a variety of models and methods have been developed and tested to alleviate this problem. A major motivation for this research is that the lack of efficient tools for patient record matching still exists for health care providers. This research is focused on the approximate matching of patient records with third party payer databases. This is a major need for all medical treatment facilities and hospitals that try to match patient treatment records with records of insurance companies, Medicare, Medicaid and the veteran\u27s administration. Therefore, the main objectives of this research effort are to provide an approximate matching framework that can draw upon multiple input service databases, construct an identity, and match to third party payers with the highest possible accuracy in object identification and minimal user interactions. This research describes the object identification system framework that has been developed from a hybridization of several technologies, which compares the object\u27s shared attributes in order to identify matching object. Methodologies and techniques from other fields, such as information retrieval, text correction, and data mining, are integrated to develop a framework to address the patient record matching problem. This research defines the quality of a match in multiple databases by using quality metrics, such as Precision, Recall, and F-measure etc, which are commonly used in Information Retrieval. The performance of resulting decision models are evaluated through extensive experiments and found to perform very well. The matching quality performance metrics, such as precision, recall, F-measure, and accuracy, are over 99%, ROC index are over 99.50% and mismatching rates are less than 0.18% for each model generated based on different data sets. This research also includes a discussion of the problems in patient records matching; an overview of relevant literature for the record matching problem and extensive experimental evaluation of the methodologies, such as string similarity functions and machine learning that are utilized. Finally, potential improvements and extensions to this work are also presented

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Scheduling cross-docking operations under uncertainty: A stochastic genetic algorithm based on scenarios tree

    Get PDF
    A cross-docking terminal enables consolidating and sorting fast-moving products along supply chain networks and reduces warehousing costs and transportation efforts. The target efficiency of such logistic systems results from synchronizing the physical and information flows while scheduling receiving, shipping and handling operations. Within the tight time-windows imposed by fast-moving products (e.g., perishables), a deterministic schedule hardly adheres to real-world environments because of the uncertainty in trucks arrivals. In this paper, a stochastic MILP model formulates the minimization of penalty costs from exceeding the time-windows under uncertain truck arrivals. Penalty costs are affected by products' perishability or the expected customer’ service level. A validating numerical example shows how to solve (1) dock-assignment, (2) while prioritizing the unloading tasks, and (3) loaded trucks departures with a small instance. A tailored stochastic genetic algorithm able to explore the uncertain scenarios tree and optimize cross-docking operations is then introduced to solve scaled up instaces. The proposed genetic algorithm is tested on a real-world problem provided by a national delivery service network managing the truck-to-door assignment, the loading, unloading, and door-to-door handling operations of a fleet of 271 trucks within two working shifts. The obtained solution improves the deterministic schedule reducing the penalty costs of 60%. Such results underline the impact of unpredicted trucks’ delay and enable assessing the savings from increasing the number of doors at the cross-dock
    • …
    corecore