1,594 research outputs found

    A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

    Full text link
    The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph admits a planar drawing such that the clusters can be nicely represented by regions. We introduce the cd-tree data structure and give a new characterization of c-planarity. It leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster and every co-cluster (complement of a cluster) has at most two connected components. (ii) Every cluster has at most five outgoing edges. Moreover, the cd-tree reveals interesting connections between c-planarity and planarity with constraints on the order of edges around vertices. On one hand, this gives rise to a bunch of new open problems related to c-planarity, on the other hand it provides a new perspective on previous results.Comment: 17 pages, 2 figure

    A new proof of Vassiliev's conjecture

    Full text link
    We give a new proof of Vassiliev's planarity criterion for framed four-valent graphs (and more generally, *-graphs), which is based on Pontryagin-Kuratowski theorem.Comment: a planarity criterion for noneven *-graphs is adde

    NodeTrix Planarity Testing with Small Clusters

    Full text link
    We study the NodeTrix planarity testing problem for flat clustered graphs when the maximum size of each cluster is bounded by a constant kk. We consider both the case when the sides of the matrices to which the edges are incident are fixed and the case when they can be chosen arbitrarily. We show that NodeTrix planarity testing with fixed sides can be solved in O(k3k+32â‹…n)O(k^{3k+\frac{3}{2}} \cdot n) time for every flat clustered graph that can be reduced to a partial 2-tree by collapsing its clusters into single vertices. In the general case, NodeTrix planarity testing with fixed sides can be solved in O(n)O(n) time for k=2k = 2, but it is NP-complete for any k>2k > 2. NodeTrix planarity testing remains NP-complete also in the free sides model when k>4k > 4.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A generalization of Vassiliev's planarity criterion

    Full text link
    Motivated by his studies in knot theory V. Vassiliev introduced XX-graphs as regular 4-valent graph with a structure of pairs of opposite edges at each vertex. He conjectured the conditions under which XX-graph can be embedded into a plane respecting the the XX-structure at every vertex. The conjecture was proved by V.Manturov. Here we generalize these results for graphs with vertices of valency 4 or 6, *-graphs. A problem of such generalization was posted by A.Skopenkov

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201
    • …
    corecore