73 research outputs found

    DEVELOPMENT AND EVALUATION OF ENVELOPE, SPECTRAL AND TIME ENHANCEMENT ALGORITHMS FOR AUDITORY NEUROPATHY

    Get PDF
    Auditory neuropathy (AN) is a hearing disorder that reduces the ability to detect temporal cues in speech, thus leading to deprived speech perception. Traditional amplification and frequency shifting techniques used in modern hearing aids are not suitable to assist individuals with AN due to the unique symptoms that result from the disorder. This study proposes a method for combining both speech envelope enhancement and time scaling to combine the proven benefits of each algorithm. In addition, spectral enhancement is cascaded with envelope and time enhancement to address the poor frequency discrimination in AN. The proposed speech enhancement strategy was evaluated using an AN simulator with normal hearing listeners under varying degrees of AN severity. The results showed a significant increase in word recognition scores for time scaling and envelope enhancement over envelope enhancement alone. Furthermore, the addition of spectral enhancement resulted in further increase in word recognition at profound AN severity

    Non-intrusive identification of speech codecs in digital audio signals

    Get PDF
    Speech compression has become an integral component in all modern telecommunications networks. Numerous codecs have been developed and deployed for efficiently transmitting voice signals while maintaining high perceptual quality. Because of the diversity of speech codecs used by different carriers and networks, the ability to distinguish between different codecs lends itself to a wide variety of practical applications, including determining call provenance, enhancing network diagnostic metrics, and improving automated speaker recognition. However, few research efforts have attempted to provide a methodology for identifying amongst speech codecs in an audio signal. In this research, we demonstrate a novel approach for accurately determining the presence of several contemporary speech codecs in a non-intrusive manner. The methodology developed in this research demonstrates techniques for analyzing an audio signal such that the subtle noise components introduced by the codec processing are accentuated while most of the original speech content is eliminated. Using these techniques, an audio signal may be profiled to gather a set of values that effectively characterize the codec present in the signal. This procedure is first applied to a large data set of audio signals from known codecs to develop a set of trained profiles. Thereafter, signals from unknown codecs may be similarly profiled, and the profiles compared to each of the known training profiles in order to decide which codec is the best match with the unknown signal. Overall, the proposed strategy generates extremely favorable results, with codecs being identified correctly in nearly 95% of all test signals. In addition, the profiling process is shown to require a very short analysis length of less than 4 seconds of audio to achieve these results. Both the identification rate and the small analysis window represent dramatic improvements over previous efforts in speech codec identification

    Variable bit rate voice over ATM using compression and silence removal

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 45-46).by Mario A. Yearwood.M.Eng

    DENT-DDSP: Data-efficient noisy speech generator using differentiable digital signal processors for explicit distortion modelling and noise-robust speech recognition

    Full text link
    The performances of automatic speech recognition (ASR) systems degrade drastically under noisy conditions. Explicit distortion modelling (EDM), as a feature compensation step, is able to enhance ASR systems under such conditions by simulating the in-domain noisy speeches from the clean counterparts. Yet, existing distortion models are either non-trainable or unexplainable and often lack controllability and generalization ability. In this paper, we propose a fully explainable and controllable model: DENT-DDSP to achieve EDM. DENT-DDSP utilizes novel differentiable digital signal processing (DDSP) components and requires only 10 seconds of training data to achieve high fidelity. The experiment shows that the simulated noisy data from DENT-DDSP achieves the highest simulation fidelity compared to other baseline models in terms of multi-scale spectral loss (MSSL). Moreover, to validate whether the data simulated by DENT-DDSP are able to replace the scarce in-domain noisy data in the noise-robust ASR tasks, several downstream ASR models with the same architecture are trained using the simulated data and the real data. The experiment shows that the model trained with the simulated noisy data from DENT-DDSP achieves similar performances to the benchmark with a 2.7\% difference in terms of word error rate (WER). The code of the model is released online

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    AUDIO PROCESSING ANALYZER

    Get PDF
    The project emphasizes simulation of various DSP effects using elementary phenomenon of audio processing, and by manipulating audio using various filters in order to enhance the quality. There are many commercially available systems, which provide facilities such as channel equalizers, karaoke systems, and a few audio processors based on Digital Signal Processing. Software systems are also available which provide a fairly good and cost effective solution to audio enhancement. Yet they are limited due to resources issues and thus make a trade-off between performance and quality. The project at first studies and analyses proceeds as study and analysis of audio processing phenomena and various effects involved in it. In the second phase algorithms have been developed for these phenomena and their simulation in MATLAB.
    corecore