12,397 research outputs found

    Benchmarking hypercube hardware and software

    Get PDF
    It was long a truism in computer systems design that balanced systems achieve the best performance. Message passing parallel processors are no different. To quantify the balance of a hypercube design, an experimental methodology was developed and the associated suite of benchmarks was applied to several existing hypercubes. The benchmark suite includes tests of both processor speed in the absence of internode communication and message transmission speed as a function of communication patterns

    A Pure Java Parallel Flow Solver

    Get PDF
    In this paper an overview is given on the "Have Java" project to attain a pure Java parallel Navier-Stokes flow solver (JParNSS) based on the thread concept and remote method invocation (RMI). The goal of this project is to produce an industrial flow solver running on an arbitrary sequential or parallel architecture, utilizing the Internet, capable of handling the most complex 3D geometries as well as flow physics, and also linking to codes in other areas such as aeroelasticity etc. Since Java is completely object-oriented the code has been written in an object-oriented programming (OOP) style. The code also includes a graphics user interface (GUI) as well as an interactive steering package for the parallel architecture. The Java OOP approach provides profoundly improved software productivity, robustness, and security as well as reusability and maintainability. OOP allows code construction similar to the aerodynamic design process because objects can be software coded and integrated, reflecting actual design procedures. In addition, Java is the programming language of the Internet and thus Java is the programming language of the Internet and thus Java objects on disparate machines or even separate networks can be connected. We explain the motivation for the design of JParNSS along with its capabilities that set it apart from other solvers. In the first two sections we present a discussion of the Java language as the programming tool for aerospace applications. In section three the objectives of the Have Java project are presented. In the next section the layer structures of JParNSS are discussed with emphasis on the parallelization and client-server (RMI) layers. JParNSS, like its predecessor ParNSS (ANSI-C), is based on the multiblock idea, and allows for arbitrarily complex topologies. Grids are accepted in GridPro property settings, grids of any size or block number can be directly read by JParNSS without any further modifications, requiring no additional preparation time for the solver input. In the last section, computational results are presented, with emphasis on multiprocessor Pentium and Sun parallel systems run by the Solaris operating system (OS)

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    ARM2GC: Succinct Garbled Processor for Secure Computation

    Get PDF
    We present ARM2GC, a novel secure computation framework based on Yao's Garbled Circuit (GC) protocol and the ARM processor. It allows users to develop privacy-preserving applications using standard high-level programming languages (e.g., C) and compile them using off-the-shelf ARM compilers (e.g., gcc-arm). The main enabler of this framework is the introduction of SkipGate, an algorithm that dynamically omits the communication and encryption cost of the gates whose outputs are independent of the private data. SkipGate greatly enhances the performance of ARM2GC by omitting costs of the gates associated with the instructions of the compiled binary, which is known by both parties involved in the computation. Our evaluation on benchmark functions demonstrates that ARM2GC not only outperforms the current GC frameworks that support high-level languages, it also achieves efficiency comparable to the best prior solutions based on hardware description languages. Moreover, in contrast to previous high-level frameworks with domain-specific languages and customized compilers, ARM2GC relies on standard ARM compiler which is rigorously verified and supports programs written in the standard syntax.Comment: 13 page
    corecore