10 research outputs found

    A unified Pythagorean hodograph approach to the medial axis transform and offset approximation

    Get PDF
    AbstractAlgorithms based on Pythagorean hodographs (PH) in the Euclidean plane and in Minkowski space share common goals, the main one being rationality of offsets of planar domains. However, only separate interpolation techniques based on these curves can be found in the literature. It was recently revealed that rational PH curves in the Euclidean plane and in Minkowski space are very closely related. In this paper, we continue the discussion of the interplay between spatial MPH curves and their associated planar PH curves from the point of view of Hermite interpolation. On the basis of this approach we design a new, simple interpolation algorithm. The main advantage of the unifying method presented lies in the fact that it uses, after only some simple additional computations, an arbitrary algorithm for interpolation using planar PH curves also for interpolation using spatial MPH curves. We present the functionality of our method for G1 Hermite data; however, one could also obtain higher order algorithms

    Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable

    Full text link

    Construction of planar quintic Pythagorean-hodograph curves by control-polygon constraints

    Get PDF
    In the construction and analysis of a planar Pythagorean–hodograph (PH) quintic curve r(t), t∈[0,1] using the complex representation, it is convenient to invoke a translation/rotation/scaling transformation so r(t) is in canonical form with r(0)=0, r(1)=1 and possesses just two complex degrees of freedom. By choosing two of the five control–polygon legs of a quintic PH curve as these free complex parameters, the remaining three control–polygon legs can be expressed in terms of them and the roots of a quadratic or quartic equation. Consequently, depending on the chosen two control–polygon legs, there exist either two or four distinct quintic PH curves that are consistent with them. A comprehensive analysis of all possible pairs of chosen control polygon legs is developed, and examples are provided to illustrate this control–polygon paradigm for the construction of planar quintic PH curves

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore