23,740 research outputs found

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part I: template-based generic programming

    Full text link
    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering

    Expression Templates Revisited: A Performance Analysis of the Current ET Methodology

    Full text link
    In the last decade, Expression Templates (ET) have gained a reputation as an efficient performance optimization tool for C++ codes. This reputation builds on several ET-based linear algebra frameworks focused on combining both elegant and high-performance C++ code. However, on closer examination the assumption that ETs are a performance optimization technique cannot be maintained. In this paper we demonstrate and explain the inability of current ET-based frameworks to deliver high performance for dense and sparse linear algebra operations, and introduce a new "smart" ET implementation that truly allows the combination of high performance code with the elegance and maintainability of a domain-specific language.Comment: 16 pages, 7 figure

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    C++ Templates as Partial Evaluation

    Full text link
    This paper explores the relationship between C++ templates and partial evaluation. Templates were designed to support generic programming, but unintentionally provided the ability to perform compile-time computations and code generation. These features are completely accidental, and as a result their syntax is awkward. By recasting these features in terms of partial evaluation, a much simpler syntax can be achieved. C++ may be regarded as a two-level language in which types are first-class values. Template instantiation resembles an offline partial evaluator. This paper describes preliminary work toward a single mechanism based on Partial Evaluation which unifies generic programming, compile-time computation and code generation. The language Catat is introduced to illustrate these ideas.Comment: 13 page

    A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems

    Full text link
    Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.Comment: Parallel Computing 2011 (ParCo2011), 30 August -- 2 September 2011, Ghent, Belgiu
    • …
    corecore