47 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Round-Based Consensus Algorithms, Predicate Implementations and Quantitative Analysis

    Get PDF
    Fault-tolerant computing is the art and science of building computer systems that continue to operate normally in the presence of faults. The fault tolerance field covers a wide spectrum of research area ranging from computer hardware to computer software. A common approach to obtain a fault-tolerant system is using software replication. However, maintaining the state of the replicas consistent is not an easy task, even though the understanding of the problems related to replication has significantly evolved over the past thirty years. Consensus is a fundamental building block to provide consistency in any fault-tolerant distributed system. A large number of algorithms have been proposed to solve the consensus problem in different systems. The efficiency of several consensus algorithms has been studied theoretically and practically. A common metric to evaluate the performance of consensus algorithms is the number of communication steps or the number of rounds (in round-based algorithms) for deciding. A large amount of improvements to consensus algorithms have been proposed to reduce this number under different assumptions, e.g., nice runs. However, the efficiency expressed in terms of number of rounds does not predict the time it takes to decide (including the time needed by the system to stabilize or not). Following this idea, the thesis investigates the round model abstraction to represent consensus algorithms, with benign and Byzantine faults, in a concise and modular way. The goal of the thesis is first to decouple the consensus algorithm from irrelevant details of implementations, such as synchronization, then study different possible implementations for a given consensus algorithm, and finally propose a more general analytical analysis for different consensus algorithms. The first part of the thesis considers the round-based consensus algorithms with benign faults. In this context, the round model allowed us to separate the consensus algorithms from the round implementation, to propose different round implementations, to improve existing round implementations by making them swift, and to provide quantitative analysis of different algorithms. The second part of the thesis considers the round-based consensus algorithms with Byzantine faults. In this context, there is a gap between theoretical consensus algorithms and practical Byzantine fault-tolerant protocols. The round model allowed us to fill the gap by better understanding existing protocols, and enabled us to express existing protocols in a simple and modular way, to obtain simplified proofs, to discover new protocols such as decentralized (non leader-based) algorithms, and finally to perform precise timing analysis to compare different algorithms. The last part of the thesis shows, as an example, how a round-based consensus algorithm that tolerates benign faults can be extended to wireless mobile ad hoc networks using an adequate communication layer. We have validated our implementation by running simulations in single hop and multi-hop wireless networks

    Security aspects of OSPF as a MANET routing protocol

    Get PDF
    OSPF, Open Shortest Path First, is an Intra-gateway routing protocol first developed as an IETF effort. It is widely adopted in large enterprise-scale networks, being well regarded for its fast convergence and loop-free routing. It is versatile in terms of which interface types it supports, such as point-to-point links or broadcast networks. It also offers scalability through hierarchical routing and by using centralization to reduce the amount of overhead on networks which have broadcast or broadcast-similar properties. An interface type missing from the standard so far is that of a wireless network, characterized by non-guaranteed bidirectional links combined with unreliable broadcasting, and existing interface types generally perform poorly under these networks. The IETF has therefore instituted a Working Group to standardize such an interface type extension to the latest version, OSPF version 3. This interface type will permit mobility and multi-hop characteristics in addition to those of wireless links in general. Such networks are usually referred to as Mobile Ad-hoc Networks (MANET). MANET routing protocols are subject to more severe security issues than ordinary, wireline-oriented protocols are. This thesis aims to indentify key security aspects of OSPF as a MANET routing protocol

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Encaminhamento confiável e energeticamente eficiente para redes ad hoc

    Get PDF
    Doutoramento em InformáticaIn Mobile Ad hoc NETworks (MANETs), where cooperative behaviour is mandatory, there is a high probability for some nodes to become overloaded with packet forwarding operations in order to support neighbor data exchange. This altruistic behaviour leads to an unbalanced load in the network in terms of traffic and energy consumption. In such scenarios, mobile nodes can benefit from the use of energy efficient and traffic fitting routing protocol that better suits the limited battery capacity and throughput limitation of the network. This PhD work focuses on proposing energy efficient and load balanced routing protocols for ad hoc networks. Where most of the existing routing protocols simply consider the path length metric when choosing the best route between a source and a destination node, in our proposed mechanism, nodes are able to find several routes for each pair of source and destination nodes and select the best route according to energy and traffic parameters, effectively extending the lifespan of the network. Our results show that by applying this novel mechanism, current flat ad hoc routing protocols can achieve higher energy efficiency and load balancing. Also, due to the broadcast nature of the wireless channels in ad hoc networks, other technique such as Network Coding (NC) looks promising for energy efficiency. NC can reduce the number of transmissions, number of re-transmissions, and increase the data transfer rate that directly translates to energy efficiency. However, due to the need to access foreign nodes for coding and forwarding packets, NC needs a mitigation technique against unauthorized accesses and packet corruption. Therefore, we proposed different mechanisms for handling these security attacks by, in particular by serially concatenating codes to support reliability in ad hoc network. As a solution to this problem, we explored a new security framework that proposes an additional degree of protection against eavesdropping attackers based on using concatenated encoding. Therefore, malicious intermediate nodes will find it computationally intractable to decode the transitive packets. We also adopted another code that uses Luby Transform (LT) as a pre-coding code for NC. Primarily being designed for security applications, this code enables the sink nodes to recover corrupted packets even in the presence of byzantine attacks.Nas redes móveis ad hoc (MANETs), onde o comportamento cooperativo é obrigatório, existe uma elevada probabilidade de alguns nós ficarem sobrecarregados nas operações de encaminhamento de pacotes no apoio à troca de dados com nós vizinhos. Este comportamento altruísta leva a uma sobrecarga desequilibrada em termos de tráfego e de consumo de energia. Nestes cenários, os nós móveis poderão beneficiar do uso da eficiência energética e de protocolo de encaminhamento de tráfego que melhor se adapte à sua capacidade limitada da bateria e velocidade de processamento. Este trabalho de doutoramento centra-se em propor um uso eficiente da energia e protocolos de encaminhamento para balanceamento de carga nas redes ad hoc. Actualmente a maioria dos protocolos de encaminhamento existentes considera simplesmente a métrica da extensão do caminho, ou seja o número de nós, para a escolha da melhor rota entre fonte (S) e um nó de destino (D); no mecanismo aqui proposto os nós são capazes de encontrar várias rotas por cada par de nós de origem e destino e seleccionar o melhor caminho segundo a energia e parâmetros de tráfego, aumentando o tempo de vida útil da rede. Os nossos resultados mostram que pela aplicação deste novo mecanismo, os protocolos de encaminhamento ad hoc actuais podem alcançar uma maior eficiência energética e balanceamento de carga. Para além disso, devido à natureza de difusão dos canais sem fio em redes ad-hoc, outras técnicas, tais como a Codificação de Rede (NC), parecem ser também promissoras para a eficiência energética. NC pode reduzir o número de transmissões, e número de retransmissões e aumentar a taxa de transferência de dados traduzindo-se directamente na melhoria da eficiência energética. No entanto, devido ao acesso dos nós intermediários aos pacotes em trânsito e sua codificação, NC necessita de uma técnica que limite as acessos não autorizados e a corrupção dos pacotes. Explorou-se o mecanismo de forma a oferecer um novo método de segurança que propõe um grau adicional de protecção contra ataques e invasões. Por conseguinte, os nós intermediários mal-intencionados irão encontrar pacotes em trânsito computacionalmente intratáveis em termos de descodificação. Adoptou-se também outro código que usa Luby Transform (LT) como um código de précodificação no NC. Projectado inicialmente para aplicações de segurança, este código permite que os nós de destino recuperem pacotes corrompidos mesmo em presença de ataques bizantinos

    Security protocols for mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are generating much interest both in academia and the telecommunication industries. The principal attractions of MANETs are related to the ease with which they can be deployed due to their infrastructure-less and decentralized nature. For example, unlike other wireless networks, MANETs do not require centralized infrastructures such as base stations, and they are arguably more robust due to their avoidance of single point of failures. Interestingly, the attributes that make MANETs attractive as a network paradigm are the same phenomena that compound the challenge of designing adequate security schemes for these innovative networks.One of the challenging security problems is the issue of certificate revocation in MANETs where there are no on-line access to trusted authorities. In wired network environments, when certificates are to be revoked, certificate authorities (CAs) add the information regarding the certificates in question to certificate revocation lists (CRLs) and post the CRLs on accessible repositories or distribute them to relevant entities. In purely ad hoc networks, there are typically no access to centralized repositories or trusted authorities; therefore the conventional method of certificate revocation is not applicable.Another challenging MANET security problem is the issue of secure routing in the presence of selfish or adversarial entities which selectively drop packets they agreed to forward; and in so doing these selfish or adversarial entities can disrupt the network traffic and cause various communication problems.In this thesis, we present two security protocols we developed for addressing the above-mentioned MANET security needs. The first protocol is a decentralized certificate revocation scheme which allows the nodes within a MANET to have full control over the process of certificate revocation. The scheme is fully contained and it does not rely on any input from centralized or external entities such as trusted CAs. The second protocol is a secure MANET routing scheme we named Robust Source Routing (RSR). In addition to providing data origin authentication services and integrity checks, RSR is able to mitigate against intelligent, colluding malicious agents which selectively drop or modify packets they are required to forward
    corecore