874 research outputs found

    Towards Optimal Synchronous Counting

    Full text link
    Consider a complete communication network of nn nodes, where the nodes receive a common clock pulse. We study the synchronous cc-counting problem: given any starting state and up to ff faulty nodes with arbitrary behaviour, the task is to eventually have all correct nodes counting modulo cc in agreement. Thus, we are considering algorithms that are self-stabilizing despite Byzantine failures. In this work, we give new algorithms for the synchronous counting problem that (1) are deterministic, (2) have linear stabilisation time in ff, (3) use a small number of states, and (4) achieve almost-optimal resilience. Prior algorithms either resort to randomisation, use a large number of states, or have poor resilience. In particular, we achieve an exponential improvement in the space complexity of deterministic algorithms, while still achieving linear stabilisation time and almost-linear resilience.Comment: 17 pages, 2 figure

    Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus

    Full text link
    We propose separating the task of reliable transaction dissemination from transaction ordering, to enable high-performance Byzantine fault-tolerant quorum-based consensus. We design and evaluate a mempool protocol, Narwhal, specializing in high-throughput reliable dissemination and storage of causal histories of transactions. Narwhal tolerates an asynchronous network and maintains high performance despite failures. Narwhal is designed to easily scale-out using multiple workers at each validator, and we demonstrate that there is no foreseeable limit to the throughput we can achieve. Composing Narwhal with a partially synchronous consensus protocol (Narwhal-HotStuff) yields significantly better throughput even in the presence of faults or intermittent loss of liveness due to asynchrony. However, loss of liveness can result in higher latency. To achieve overall good performance when faults occur we design Tusk, a zero-message overhead asynchronous consensus protocol, to work with Narwhal. We demonstrate its high performance under a variety of configurations and faults. As a summary of results, on a WAN, Narwhal-Hotstuff achieves over 130,000 tx/sec at less than 2-sec latency compared with 1,800 tx/sec at 1-sec latency for Hotstuff. Additional workers increase throughput linearly to 600,000 tx/sec without any latency increase. Tusk achieves 160,000 tx/sec with about 3 seconds latency. Under faults, both protocols maintain high throughput, but Narwhal-HotStuff suffers from increased latency
    • …
    corecore