102 research outputs found

    A New Covert Channel Over Cellular Network Voice Channel

    Get PDF
    Smartphone security has become increasingly more significant as smartphones become a more important part of many individuals\u27 daily lives. Smartphones undergo all computer security issues; however, they also introduce a new set of security issues as various capabilities are added. Smartphone security researchers pay more attention to security issues inherited from the traditional computer security field than smartphone-related security issues. The primary network that smartphones are connected to is the cellular network, but little effort has been directed at investigating the potential security issues that could threaten this network and its end users. A new possible threat that could occur in the cellular network is introduced in this paper. This research proves the ability to use the cellular network voice channel as a covert channel that can convey covert information as speech, thus breaking the network policies. The study involves designing and implementing multiple subsystems in order to prove the theory. First, a software audio modem that is able to convert digital data into audio waves and inject the audio waves to the GSM voice channel was developed. Moreover, a user-mode rootkit was implemented in order to open the voice channels by stealthily answering the incoming voice call, thus breaking the security mechanisms of the smartphone. Multiple scenarios also were tested in order to verify the effectiveness of the proposed covert channel. The first scenario is a covert communication between two parties that intends to hide their communications by using a network that is unknown to the adversary and not protected by network security guards. The two parties communicate through the cellular network voice channel to send and receive text messages. The second scenario is a side channel that is able to leak data such as SMS or the contact of a hacked smartphone through the cellular network voice channel. The third scenario is a botnet system that uses the voice channel as command and control channel (C2). This study identifies a new potential smartphone covert channel, so the outcome should be setting countermeasures against this kind of breach

    Enter Sandbox: Android Sandbox Comparison

    Full text link
    Expecting the shipment of 1 billion Android devices in 2017, cyber criminals have naturally extended their vicious activities towards Google's mobile operating system. With an estimated number of 700 new Android applications released every day, keeping control over malware is an increasingly challenging task. In recent years, a vast number of static and dynamic code analysis platforms for analyzing Android applications and making decision regarding their maliciousness have been introduced in academia and in the commercial world. These platforms differ heavily in terms of feature support and application properties being analyzed. In this paper, we give an overview of the state-of-the-art dynamic code analysis platforms for Android and evaluate their effectiveness with samples from known malware corpora as well as known Android bugs like Master Key. Our results indicate a low level of diversity in analysis platforms resulting from code reuse that leaves the evaluated systems vulnerable to evasion. Furthermore the Master Key bugs could be exploited by malware to hide malicious behavior from the sandboxes.Comment: In Proceedings of the Third Workshop on Mobile Security Technologies (MoST) 2014 (http://arxiv.org/abs/1410.6674

    Hijacking User Uploads to Online Persistent Data Repositories for Covert Data Exfiltration

    Get PDF
    As malware has evolved over the years, it has gone from harmless programs that copy themselves into other executables to modern day botnets that perform bank fraud and identity theft. Modern malware often has a need to communicate back to the author, or other machines that are also infected. Several techniques for transmitting this data covertly have been developed over the years which vary significantly in their level of sophistication. This research creates a new covert channel technique for stealing information from a network by piggybacking on user-generated network traffic. Specifically, steganography drop boxes and passive covert channels are merged to create a novel covert data exfiltration technique. This technique revolves around altering user supplied data being uploaded to online repositories such as image hosting websites. It specifically targets devices that are often used to generate and upload content to the Internet, such as smartphones. The reliability of this technique is tested by creating a simulated version of Flickr as well as simulating how smartphone users interact with the service. Two different algorithms for recovering the exfiltrated data are compared. The results show a clear improvement for algorithms that are user-aware. The results continue on to compare performance for varying rates of infection of mobile devices and show that performance is proportional to the infection rate

    Security in Computer and Information Sciences

    Get PDF
    This open access book constitutes the thoroughly refereed proceedings of the Second International Symposium on Computer and Information Sciences, EuroCybersec 2021, held in Nice, France, in October 2021. The 9 papers presented together with 1 invited paper were carefully reviewed and selected from 21 submissions. The papers focus on topics of security of distributed interconnected systems, software systems, Internet of Things, health informatics systems, energy systems, digital cities, digital economy, mobile networks, and the underlying physical and network infrastructures. This is an open access book

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection
    • …
    corecore