15,353 research outputs found

    Chiral active fluids: Odd viscosity, active turbulence, and directed flows of hydrodynamic microrotors

    Get PDF
    While the number of publications on rotating active matter has rapidly increased in recent years, studies on purely hydrodynamically interacting rotors on the microscale are still rare, especially from the perspective of particle based hydrodynamic simulations. The work presented here targets to fill this gap. By means of high-performance computer simulations, performed in a highly parallelised fashion on graphics processing units, the dynamics of ensembles of up to 70,000 rotating colloids immersed in an explicit mesoscopic solvent consisting out of up to 30 million fluid particles, are investigated. Some of the results presented in this thesis have been worked out in collaboration with experimentalists, such that the theoretical considerations developed in this thesis are supported by experiments, and vice versa. The studied system, modelled in order to resemble the essential physics of the experimentally realisable system, consists out of rotating magnetic colloidal particles, i.e., (micro-)rotors, rotating in sync to an externally applied magnetic field, where the rotors solely interact via hydrodynamic and steric interactions. Overall, the agreement between simulations and experiments is very good, proving that hydrodynamic interactions play a key role in this and related systems. While already an isolated rotating colloid is driven out of equilibrium, only collections of two or more rotors have experimentally shown to be able to convert the rotational energy input into translational dynamics in an orbital rotating fashion. The rotating colloids inject circular flows into the fluid, such that detailed balance is broken, and it is not a priori known whether equilibrium properties of colloids can be extended to isolated rotating colloids. A joint theoretical and experimental analysis of isolated, pairs, and small groups of hydrodynamically interacting rotors is given in chapter 2. While the translational dynamics of isolated rotors effectively resemble the dynamics of non-rotating colloids, the orbital rotation of pairs of rotors can be described with leading order hydrodynamics and a two-dimensional analogy of Faxén’s law is derived. In chapter 3, a homogeneously distributed ensemble of rotors (bulk) as a realisation of a chiral active fluid is studied and it is explicitly shown computationally and experimentally that it carries odd viscosity. The mutual orbital translation of rotors and an increase of the effective solvent viscosity with rotor density lead to a non-monotonous behaviour of the average translational velocity. Meanwhile, the rotor suspension bears a finite osmotic compressibility resulting from the long-ranged nature of hydrody- namic interactions such that rotational and odd stresses are transmitted through the solvent also at small and intermediate rotor densities. Consequently, density inhomogeneities predicted for chiral active fluids with odd viscosity can be found and allow for an explicit measurement of odd viscosity in simulations and experiments. At intermediate densities, the collective dynamics shows the emergence of multi-scale vortices and chaotic motion which is identified as active turbulence with a self-similar power-law decay in the energy spectrum, showing that the injected energy on the rotor scale is transported to larger scales, similar to the inverse energy cascade of clas- sical two-dimensional turbulence. While either odd viscosity or active turbulence have been reported in chiral active matter previously, the system studied here shows that the emergence of both simultaneously is possible resulting from the osmotic compressibility and hydrodynamic mediation of odd and active stresses. The collective dynamics of colloids rotating out of phase, i.e., where a constant torque instead of a constant angular velocity is applied, is shown to be qualitatively very similar. However, at smaller densities, local density inhomogeneities imply position dependent angular velocities of the rotors resulting from inter-rotor friction. While the friction of a quasi-2D layer of active colloids with the substrate is often not easily modifiable in experiments, the incorporation of substrate friction into the simulation models typically implies a considerable increase in computational effort. In chapter 4, a very efficient way of incorporating the friction with a substrate into a two-dimensional multiparticle collision dynamics solvent is introduced, allowing for an explicit investigation of the influences of substrate on active dynamics. For the rotor fluid, it is explicitly shown that the influence of the substrate friction results in a cutoff of the hydrodynamic interaction length, such that the maximum size of the formed vortices is controlled by the substrate friction, also resulting in a cutoff in the energy spectrum, because energy is taken out of the system at the respective length. These findings are in agreement with the experiments. Since active particles in confinement are known to organise in states of collective dynamics, ensembles of rotationally actuated colloids are studied in circular confinement and in the presence of periodic obstacle lattices in chapters 5 and 6, respectively. The results show that the chaotic active turbulent transport of rotors in suspension can be enhanced and guided resulting from edge flows generated at the boundaries, as has recently been reported for a related chiral active system. The consequent collective rotor dynamics can be regarded as a superposition of active turbulent and imposed flows, leading to on average stationary flows. In contrast to the bulk dynamics, the imposed flows inject additional energy into the system on the long length scales, and the same scaling behaviour of the energy spectrum as in bulk is only obtained if the energy injection scales, due to the mutual generation of rotor translational dynamics throughout the system and the edge flows, are well separated. The combination of edge flow and entropic layering at the boundaries leads to oscillating hydrodynamic stresses and consequently to an oscillating vorticity profile. In the presence of odd viscosity, this consequently leads to non-trivial steady-state density modulations at the boundary, resulting from a balance of osmotic pressure and odd stresses. Relevant for the efficient dispersion and mixing of inert particles on the mesoscale by means of active turbulent mixing powered by rotors, a study of the dynamics of a binary mixture consisting out of rotors and passive particles is presented in chapter 7. Because the rotors are not self-propelled, but the translational dynamics is induced by the surrounding rotors, the passive particles, which do not inject further energy into the system, are transported according to the same mechanism as the rotors. The collective dynamics thus resembles the pure rotor bulk dynamics at the respective density of only rotors. However, since no odd stresses act between the passive particles, only mutual rotor interactions lead to odd stresses leading to the accumulation of rotors in the regions of positive vorticity. This density increase is associated with a pressure increase, which balances the odd stresses acting on the rotors. However, the passive particles are only subject to the accumulation induced pressure increase such that these particles are transported into the areas of low rotor concentration, i.e., the regions of negative vorticity. Under conditions of sustained vortex flow, this results in segregation of both particle types. Since local symmetry breaking can convert injected rotational into translational energy, microswimmers can be constructed out of rotor materials when a suitable breaking of symmetry is kept in the vicinity of a rotor. One hypothetical realisation, i.e., a coupled rotor pair consisting out of two rotors of opposite angular velocity and of fixed distance, termed a birotor, are studied in chapter 8. The birotor pumps the fluid into one direction and consequently translates into the opposite direction, and creates a flow field reminiscent of a source doublet, or sliplet flow field. Fixed in space the birotor might be an interesting realisation of a microfluidic pump. The trans- lational dynamics of a birotor can be mapped onto the active Brownian particle model for single swimmers. However, due to the hydrodynamic interactions among the rotors, the birotor ensemble dynamics do not show the emergence of stable motility induced clustering. The reason for this is the flow created by birotor in small aggregates which effectively pushes further arriving birotors away from small aggregates, which eventually are all dispersed by thermal fluctuations

    Assessing the Effects of Instream Large Wood on Floodplain Aquifer Recharge and Storage at Indian Creek, Kittitas County, Washington, USA

    Get PDF
    Numerous stream restoration projects in the Yakima River Basin in Washington have placed large wood (LW) into tributary channels. One intended effect is to divert water onto floodplains to increase groundwater (GW) recharge and seasonal storage in shallow alluvial aquifers during spring high flows with the intention of releasing GW into streams during the drier summer months. Large wood was emplaced in the Indian Creek tributary of the Teanaway River in Kittitas County, Washington beginning in 2016. Potential changes in the groundwater recharge in the adjacent floodplain before and after the LW installation were investigated through stratigraphic analysis, stream-flow modeling, and GW levels in six piezometers installed in 2014 and 2018. Stratigraphic descriptions of the stream banks reveal a ubiquitous silt/clay dominant layer (60-90 cm thick) at a depth of 1 meter or less, overlying a sand and gravel layer (15-50 cm thick), a clay/silt layer (~30 cm thick), and another sand and gravel layer. These relatively continuous clay layers extend at least 2.2 km upstream from the mouth of Indian Creek on both sides of the channel. Similar clay units have been mapped in the region as glacial drift or lacustrine deposits. The measured stream flow and GW levels in the monitoring wells before and after the LW emplacement show no detectable effect of the LW on seasonal or longer-term GW levels. Data loggers show that GW levels return to baseflow within days of monthly precipitation exceeding 70 mm, suggesting GW flow within the permeable sand and gravel layers beneath or between the clay/silt layers. Available data show that the highest spring GW elevations precede peak stream discharge, indicating that the peak streamflow is not a significant source of GW recharge. A 1-dimensional hydraulic model run with and without channel obstructions at spring monthly average discharge and peak discharge suggests that the water surface elevation may increase ~10-50 cm within and upstream of LW. This assessment of stratigraphy coupled with GW data and stream-flow model can provide insight into the effectiveness of GW recharge from LW restoration projects in similar settings within the region

    Metal−Organic Frameworks in Agriculture

    Get PDF
    The work has been supported by the MOFSEIDON project (PID2019-104228RB-100) funded by MCI/AEI/10.13039/ 501100011033/FEDER “Una manera de hacer Europa”, ESENCE project (RTC2019-007254-5) funded by MCIN/ AEI/10.13039/501100011033), Junta de Andalucía (FQM- 394), and the Multifunctional Metallodrugs in Diagnosis and Therapy Network (MICIU, RED2018-102471-T). P.H. acknowledges the Spanish Ramón y Cajal Programme (grant agreement 2014-15039). S.R. acknowledges the Spanish Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) funded by MCIN/AEI/10.13039/ 501100011033. Funding for open access charge: Universidad de Granada/CBUA.Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal–organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.MOFSEIDON project (PID2019-104228RB-100) funded by MCI/AEI/10.13039/ 501100011033/FEDERESENCE project (RTC2019-007254-5) funded by MCIN/ AEI/10.13039/501100011033Junta de Andalucía (FQM- 394), and the Multifunctional Metallodrugs in Diagnosis and Therapy Network (MICIU, RED2018-102471-T)Spanish Ramón y Cajal Programme (grant agreement 2014-15039)Spanish Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) funded by MCIN/AEI/10.13039/ 501100011033Funding for open access charge: Universidad de Granada/CBU

    Gasificação direta de biomassa para produção de gás combustível

    Get PDF
    The excessive consumption of fossil fuels to satisfy the world necessities of energy and commodities led to the emission of large amounts of greenhouse gases in the last decades, contributing significantly to the greatest environmental threat of the 21st century: Climate Change. The answer to this man-made disaster is not simple and can only be made if distinct stakeholders and governments are brought to cooperate and work together. This is mandatory if we want to change our economy to one more sustainable and based in renewable materials, and whose energy is provided by the eternal nature energies (e.g., wind, solar). In this regard, biomass can have a main role as an adjustable and renewable feedstock that allows the replacement of fossil fuels in various applications, and the conversion by gasification allows the necessary flexibility for that purpose. In fact, fossil fuels are just biomass that underwent extreme pressures and heat for millions of years. Furthermore, biomass is a resource that, if not used or managed, increases wildfire risks. Consequently, we also have the obligation of valorizing and using this resource. In this work, it was obtained new scientific knowledge to support the development of direct (air) gasification of biomass in bubbling fluidized bed reactors to obtain a fuel gas with suitable properties to replace natural gas in industrial gas burners. This is the first step for the integration and development of gasification-based biorefineries, which will produce a diverse number of value-added products from biomass and compete with current petrochemical refineries in the future. In this regard, solutions for the improvement of the raw producer gas quality and process efficiency parameters were defined and analyzed. First, addition of superheated steam as primary measure allowed the increase of H2 concentration and H2/CO molar ratio in the producer gas without compromising the stability of the process. However, the measure mainly showed potential for the direct (air) gasification of high-density biomass (e.g., pellets), due to the necessity of having char accumulation in the reactor bottom bed for char-steam reforming reactions. Secondly, addition of refused derived fuel to the biomass feedstock led to enhanced gasification products, revealing itself as a highly promising strategy in terms of economic viability and environmental benefits of future gasification-based biorefineries, due to the high availability and low costs of wastes. Nevertheless, integrated techno economic and life cycle analyses must be performed to fully characterize the process. Thirdly, application of low-cost catalyst as primary measure revealed potential by allowing the improvement of the producer gas quality (e.g., H2 and CO concentration, lower heating value) and process efficiency parameters with distinct solid materials; particularly, the application of concrete, synthetic fayalite and wood pellets chars, showed promising results. Finally, the economic viability of the integration of direct (air) biomass gasification processes in the pulp and paper industry was also shown, despite still lacking interest to potential investors. In this context, the role of government policies and appropriate economic instruments are of major relevance to increase the implementation of these projects.O consumo excessivo de combustíveis fósseis para garantir as necessidades e interesses da sociedade conduziu à emissão de elevadas quantidades de gases com efeito de estufa nas últimas décadas, contribuindo significativamente para a maior ameaça ambiental do século XXI: Alterações Climáticas. A solução para este desastre de origem humana é de caráter complexo e só pode ser atingida através da cooperação de todos os governos e partes interessadas. Para isto, é obrigatória a criação de uma bioeconomia como base de um futuro mais sustentável, cujas necessidades energéticas e materiais sejam garantidas pelas eternas energias da natureza (e.g., vento, sol). Neste sentido, a biomassa pode ter um papel principal como uma matéria prima ajustável e renovável que permite a substituição de combustíveis fósseis num variado número de aplicações, e a sua conversão através da gasificação pode ser a chave para este propósito. Afinal, na prática, os combustíveis fósseis são apenas biomassa sujeita a elevada temperatura e pressão durante milhões de anos. Além do mais, a gestão eficaz da biomassa é fundamental para a redução dos riscos de incêndio florestal e, como tal, temos o dever de utilizar e valorizar este recurso. Neste trabalho, foi obtido novo conhecimento científico para suporte do desenvolvimento das tecnologias de gasificação direta (ar) de biomassa em leitos fluidizados borbulhantes para produção de gás combustível, com o objetivo da substituição de gás natural em queimadores industriais. Este é o primeiro passo para o desenvolvimento de biorrefinarias de gasificação, uma potencial futura indústria que irá providenciar um variado número de produtos de valor acrescentado através da biomassa e competir com a atual indústria petroquímica. Neste sentido, foram analisadas várias medidas para a melhoria da qualidade do gás produto bruto e dos parâmetros de eficiência do processo. Em primeiro, a adição de vapor sobreaquecido como medida primária permitiu o aumento da concentração de H2 e da razão molar H2/CO no gás produto sem comprometer a estabilidade do processo. No entanto, esta medida somente revelou potencial para a gasificação direta (ar) de biomassa de alta densidade (e.g., pellets) devido à necessidade da acumulação de carbonizados no leito do reator para a ocorrência de reações de reforma com vapor. Em segundo, a mistura de combustíveis derivados de resíduos e biomassa residual florestal permitiu a melhoria dos produtos de gasificação, constituindo desta forma uma estratégia bastante promissora a nível económico e ambiental, devido à elevada abundância e baixo custo dos resíduos urbanos. Contudo, devem ser efetuadas análises técnico-económicas e de ciclo de vida para a completa caraterização do processo. Em terceiro, a aplicação de catalisadores de baixo custo como medida primária demonstrou elevado potencial para a melhoria do gás produto (e.g., concentração de H2 e CO, poder calorífico inferior) e para o incremento dos parâmetros de eficiência do processo; em particular, a aplicação de betão, faialite sintética e carbonizados de pellets de madeira, demonstrou resultados promissores. Finalmente, foi demonstrada a viabilidade económica da integração do processo de gasificação direta (ar) de biomassa na indústria da pasta e papel, apesar dos parâmetros determinados não serem atrativos para potenciais investidores. Neste contexto, a intervenção dos governos e o desenvolvimento de instrumentos de apoio económico é de grande relevância para a implementação destes projetos.Este trabalho foi financiado pela The Navigator Company e por Fundos Nacionais através da Fundação para a Ciência e a Tecnologia (FCT).Programa Doutoral em Engenharia da Refinação, Petroquímica e Químic

    Moisture Content and In-place Density of Cold-Recycling Treatments

    Get PDF
    Cold-recycling treatments are gaining popularity in the United States because of their economic and environmental benefits. Curing is the most critical phase for these treatments. Curing is the process where emulsion breaks and water evaporates, leaving residual binder in the treated material. In this process, the cold-recycled mix gains strength. Sufficient strength is required before opening the cold-treated layer to traffic or placing an overlay. Otherwise, premature failure, related to insufficient strength and trapped moisture, would be expected. However, some challenges arise from the lack of relevant information and specifications to monitor treatment curing. This report presents the outcomes of a research project funded by the Illinois Department for Transportation to investigate the feasibility of using the nondestructive ground-penetrating radar (GPR) for density and moisture content estimation of cold-recycled treatments. Monitoring moisture content is an indicator of curing level; treated layers must meet a threshold of maximum allowable moisture content (2% in Illinois) to be considered sufficiently cured. The methodology followed in this report included GPR numerical simulations and GPR indoor and field tests for data sources. The data were used to correlate moisture content to dielectric properties calculated from GPR measurements. Two models were developed for moisture content estimation: the first is based on numerical simulations and the second is based on electromagnetic mixing theory and called the Al-Qadi-Cao-Abufares (ACA) model. The simulation model had an average error of 0.33% for moisture prediction for five different field projects. The ACA model had an average error of 2% for density prediction and an average root-mean-square error of less than 0.5% for moisture content prediction for both indoor and field tests. The ACA model is presented as part of a developed user-friendly tool that could be used in the future to continuously monitor curing of cold-recycled treatments.IDOT-R27-227Ope

    An investigation of the geothermal potential of the Upper Devonian sandstones beneath eastern Glasgow

    Get PDF
    The urban development of the city of Glasgow is a consequence of its economic development, in part fuelled by local coalfields which exploited rocks in the same sedimentary basin within which geothermal resources in flooded abandoned mine workings, and deeper hot sedimentary aquifers (HSA), are present. This creates an opportunity to provide geothermal heating to areas of dense urban population with high heat demand. The depth of the target HSA geothermal resource, in Upper Devonian aged sandstones of the Stratheden Group, beneath eastern Glasgow was determined by gravity surveying and structural geological modelling. The estimated depth of the geothermal resource ranged from c.1500-2000 m, in the eastward deepening sedimentary basin. To reliably estimate the temperature of the geothermal resource, rigorous corrections to account for the effects of palaeoclimate and topography on heat flow were applied to boreholes in the Greater Glasgow area. The mean regional corrected heat flow was calculated as 75.7 mW m-2, an increase of 13.8 mW m-2 from the uncorrected value of 61.9 mW m-2, emphasising the extent to which heat flow was previously underestimated. Extrapolation of the geothermal gradient, calculated from the mean regional corrected heat flow, results in aquifer temperatures of c. 64-79 °C at depths of c.1500-2000 m beneath eastern Glasgow. The geothermal resource may, therefore, be capable of supporting a wide variety of direct heat use applications if sufficient matrix permeability or fracture networks are present. However, diagenetic effects such as quartz and carbonate cementation were found to restrict the porosity in Upper Devonian sandstones in a borehole and outcrop analogue study. These effects may likewise reduce porosity and intergranular permeability in the target aquifer, although this crucial aspect cannot be fully understood without deep exploratory drilling. To quantify the magnitude of the deep geothermal resource, the indicative thermal power outputs of geothermal doublet wells located in Glasgow’s East End were calculated for the first time, with outputs ranging from 1.3-2.1 MW dependent upon the aquifer depth. This, however, is predicated upon an aquifer permeability of c. 40 mD, which if reduced to 10 mD or less due to the effects of diagenesis, significantly reduces the thermal power outputs to 230-390 kW. The lack of assured project-success, given uncertainties related to the aquifer properties at depth, coupled with high capital costs of drilling, pose barriers to the development of deep geothermal energy in Glasgow. Further investigation of the economic viability of geothermal exploration, and alternative technological solutions is therefore required to mitigate the technical and economic risks. However, if sufficient matrix permeability or fracture networks are present at depth in the Upper Devonian sandstone sequence, then the potential contribution that geothermal energy could make to meeting local heat demand, reducing greenhouse gas emissions, and addressing the ‘energy trilemma’ in Glasgow is significant

    Towards A Graphene Chip System For Blood Clotting Disease Diagnostics

    Get PDF
    Point of care diagnostics (POCD) allows the rapid, accurate measurement of analytes near to a patient. This enables faster clinical decision making and can lead to earlier diagnosis and better patient monitoring and treatment. However, despite many prospective POCD devices being developed for a wide range of diseases this promised technology is yet to be translated to a clinical setting due to the lack of a cost-effective biosensing platform.This thesis focuses on the development of a highly sensitive, low cost and scalable biosensor platform that combines graphene with semiconductor fabrication tech-niques to create graphene field-effect transistors biosensor. The key challenges of designing and fabricating a graphene-based biosensor are addressed. This work fo-cuses on a specific platform for blood clotting disease diagnostics, but the platform has the capability of being applied to any disease with a detectable biomarker.Multiple sensor designs were tested during this work that maximised sensor ef-ficiency and costs for different applications. The multiplex design enabled different graphene channels on the same chip to be functionalised with unique chemistry. The Inverted MOSFET design was created, which allows for back gated measurements to be performed whilst keeping the graphene channel open for functionalisation. The Shared Source and Matrix design maximises the total number of sensing channels per chip, resulting in the most cost-effective fabrication approach for a graphene-based sensor (decreasing cost per channel from £9.72 to £4.11).The challenge of integrating graphene into a semiconductor fabrication process is also addressed through the development of a novel vacuum transfer method-ology that allows photoresist free transfer. The two main fabrication processes; graphene supplied on the wafer “Pre-Transfer” and graphene transferred after met-allisation “Post-Transfer” were compared in terms of graphene channel resistance and graphene end quality (defect density and photoresist). The Post-Transfer pro-cess higher quality (less damage, residue and doping, confirmed by Raman spec-troscopy).Following sensor fabrication, the next stages of creating a sensor platform involve the passivation and packaging of the sensor chip. Different approaches using dielec-tric deposition approaches are compared for passivation. Molecular Vapour Deposi-tion (MVD) deposited Al2O3 was shown to produce graphene channels with lower damage than unprocessed graphene, and also improves graphene doping bringing the Dirac point of the graphene close to 0 V. The packaging integration of microfluidics is investigated comparing traditional soft lithography approaches and the new 3D printed microfluidic approach. Specific microfluidic packaging for blood separation towards a blood sampling point of care sensor is examined to identify the laminar approach for lower blood cell count, as a method of pre-processing the blood sample before sensing.To test the sensitivity of the Post-Transfer MVD passivated graphene sensor de-veloped in this work, real-time IV measurements were performed to identify throm-bin protein binding in real-time on the graphene surface. The sensor was function-alised using a thrombin specific aptamer solution and real-time IV measurements were performed on the functionalised graphene sensor with a range of biologically relevant protein concentrations. The resulting sensitivity of the graphene sensor was in the 1-100 pg/ml concentration range, producing a resistance change of 0.2% per pg/ml. Specificity was confirmed using a non-thrombin specific aptamer as the neg-ative control. These results indicate that the graphene sensor platform developed in this thesis has the potential as a highly sensitive POCD. The processes developed here can be used to develop graphene sensors for multiple biomarkers in the future
    corecore