24,936 research outputs found

    Solving the Corner-Turning Problem for Large Interferometers

    Get PDF
    The so-called corner turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna needs to be routed to an array of processors that will each handle a limited portion of the data (a frequency range, say) but requires input from each antenna. We present a low-cost solution allowing the correlator to transpose its data in real time, without contending for bandwidth, via a butterfly network requiring neither additional RAM memory nor expensive general-purpose switching hardware. We discuss possible implementations of this using FPGA, CMOS, analog logic and optical technology, and conclude that the corner turner cost can be small even for upcoming massive radio arrays.Comment: Revised to match accepted MNRAS version. 7 pages, 4 fig

    Wiring Viterbi decoders (splitting deBruijn graphs)

    Get PDF
    A new Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). A key feature of this decoder is a two-level partitioning of the Viterbi state diagram into identical subgraphs. The larger subgraphs correspond to circuit boards, while the smaller subgraphs correspond to Very Large Scale Integration (VLSI) chips. The full decoder is built from identical boards, which in turn are built from identical chips. The resulting system is modular and hierarchical. The decoder is easy to implement, test, and repair because it uses a single VLSI chip design and a single board design. The partitioning is completely general in the sense that an appropriate number of boards or chips may be wired together to implement a Viterbi decoder of any size greater than or equal to the size of the module

    Skimmers: Their Development and Use in Coastal Louisiana

    Get PDF
    The origin, development, and utilization of the skimmer net is reviewed along with other historical shrimp gears used in coastal Louisiana. The skimmer was developed to catch white shrimp, Penaeus setiferus, observed jumping over the cork line (headrope) of trawls being worked in shallow waters. A description of the gear is presented including basic components and various frame designs used by fishermen during its development. The advantages of skimmers over bottom trawls include: multiple use as both trawl and butterfly net (wing net), ease of deployment, increased maneuverability, reduction and greater survivability of bycatch, and ability to cover more area due to increased speed and continuous fishing capability. Disadvantages may include compromising vessel stability when stored upright on the deck, possible damage to water bottoms when improperly rigged, and limitation to a 12-foot (3.6 m) maximum depth due to size restrictions. The growing popularity of the skimmer net is evident by its introduction into North Carolina and inquiries from other southeastern Atlantic and Gulf coast states

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    A long constraint length VLSI Viterbi decoder for the DSN

    Get PDF
    A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described

    Swedish Butterfly Monitoring Scheme, annual report for 2010

    Get PDF
    This is the first annual report for the Swedish Butterfly Monitoring Scheme, a new national monitoring programme coordinated by Lund University for the Swedish Environmental Protection Agency. The programme was initiated in 2010, and is a partnership between the Entomological Society of Sweden, the Swedish Environmental Protection Agency, Lund University, the Swedish University of Agricultural Sciences and the Swedish County Administration Boards. The monitoring scheme is volunteer-based and runs from April 15th to September 15th annually. Sites are visited 3-7 times per season and are surveyed using a standardized, common methodology. Two different recording methods are used in the Swedish Butterfly Monitoring Scheme. One is the point site counts which cover an area with a 25 m radius for 15 min per visit. The other method is fixed-route Pollard walk transects, typically 1-3 km in length. These two methods enable the monitoring scheme to assess yearly changes both in the number of butterflies seen and in species composition. The first year’s monitoring has produced butterfly data from 59 fixed-route walks and 108 point sites, and the number of locations was almost six times more than expected. The sites and walks are located across the whole country, from Malmö in the South to Luleå in the North. In 2010, 117 volunteer recorders have joined the Swedish Butterfly Monitoring Scheme and have counted nearly 30 000 butterflies of 83 different species. On average, 12.3 species have been observed at the point sites while 20.3 have been observed along transects. In this report, observations from 2010 of each species are shown as total counts, distribution maps, and flight period histograms. The most numerous species in 2010 was the Ringlet. As yearly observation data accumulate, butterfly population trends will be analysed, both nationally within the Swedish Butterfly Monitoring Scheme and internationally within the network Butterfly Conservation Europe

    Transonic turbine blade cascade testing facility

    Get PDF
    NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed

    Spartan Daily, May 5, 1960

    Get PDF
    Volume 47, Issue 121https://scholarworks.sjsu.edu/spartandaily/4037/thumbnail.jp

    The FFX Correlator

    Full text link
    We established a new algorithm for correlation process in radio astronomy. This scheme consists of the 1st-stage Fourier Transform as a filter and the 2nd-stage Fourier Transform for spectroscopy. The "FFX" correlator stands for Filter and FX architecture, since the 1st-stage Fourier Transform is performed as a digital filter, and the 2nd-stage Fourier Transform is performed as a conventional FX scheme. We developed the FFX correlator hardware not only for the verification of the FFX scheme algorithm but also for the application to the Atacama Submillimeter Telescope Experiment (ASTE) telescope toward high-dispersion and wideband radio observation at submillimeter wavelengths. In this paper, we present the principle of the FFX correlator and its properties, as well as the evaluation results with the production version.Comment: 20 figure

    A preliminary account and review of the simple methods for determining the operational parameters of fishing gear, underwater, with notes on its application

    Get PDF
    An account and review of the simple methods for determining the operational parameters of fishing gear, underwater, such a tilt of otter boards (outwards or inwards, forwards or afterwards), vertical height of net, its horizontal spread, angle of divergence at bosom, spread between wing tips, angle of inclination of danlenos, butterfly, slope of legs and sweep-line has been given. The relationship of distance between the otter boards spread and the vertical height of net has been obtained as generally linear. The possibilities of regulating the vertical height of net (dependent variate) and spread of otter boards (independent variate) for increasing the fishing efficiency has been discussed. The angle of attack of oval shaped otter boards used during the operations still remain undetermined, however, it has been explained how the best angle of attack for increasing the efficiency of gear can be obtained by regulating the ratio of depth to warp for a given net. The inadequacy of the mere indices of catch per hour of trawling in comparing the relative efficiency of trawls in gear research studies has been indicated. The importance of estimating the operational parameters and its application to commercial fisheries depending upon the distribution pattern of fish and in gear research has been discussed. The efficiency of the jelly bottle method has been compared statistically with the observations made on the trawl gear underwater with instruments
    • …
    corecore