12,420 research outputs found

    Queues and risk models with simultaneous arrivals

    Get PDF
    We focus on a particular connection between queueing and risk models in a multi-dimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue) we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline how the two-dimensional risk model with a general two-dimensional claim size distribution (hence without ordering of claim sizes) is related to a known Riemann boundary value problem

    Transient bayesian inference for short and long-tailed GI/G/1 queueing systems

    Get PDF
    In this paper, we describe how to make Bayesian inference for the transient behaviour and busy period in a single server system with general and unknown distribution for the service and interarrival time. The dense family of Coxian distributions is used for the service and arrival process to the system. This distribution model is reparametrized such that it is possible to define a non-informative prior which allows for the approximation of heavytailed distributions. Reversible jump Markov chain Monte Carlo methods are used to estimate the predictive distribution of the interarrival and service time. Our procedure for estimating the system measures is based in recent results for known parameters which are frequently implemented by using symbolical packages. Alternatively, we propose a simple numerical technique that can be performed for every MCMC iteration so that we can estimate interesting measures, such as the transient queue length distribution. We illustrate our approach with simulated and real queues

    Analysis of the finite-source multiclass priority queue with an unreliable server and setup time

    Get PDF
    In this article, we study a queueing system serving multiple classes of customers. Each class has a finite-calling population. The customers are served according to the preemptive-resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady-state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation-independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model

    On a generic class of two-node queueing systems

    Get PDF
    This paper analyzes a generic class of two-node queueing systems. A first queue is fed by an on–off Markov fluid source; the input of a second queue is a function of the state of the Markov fluid source as well, but now also of the first queue being empty or not. This model covers the classical two-node tandem queue and the two-class priority queue as special cases. Relying predominantly on probabilistic argumentation, the steady-state buffer content of both queues is determined (in terms of its Laplace transform). Interpreting the buffer content of the second queue in terms of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the second queue are found. Two regimes can be distinguished: a first in which the state of the first queue (that is, being empty or not) hardly plays a role, and a second in which it explicitly does. This dichotomy can be understood by using large-deviations heuristics

    Busy period analysis of the level dependent PH/PH/1/K queue

    Get PDF
    In this paper, we study the transient behavior of a level dependent single server queuing system with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint transform of the length of the busy period, the number of customers served during the busy period, and the number of losses during the busy period. We differentiate between two types of losses: the overflow losses that are due to a full queue and the losses due to an admission controller. For the M/PH/1/K, M/PH/1/K under a threshold policy, and PH/M/1/K queues, we determine simple expressions for their joint transforms
    corecore