86 research outputs found

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    Performance and policy dimensions in internet routing

    Get PDF
    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary

    Multiple Bus Networks for Binary -Tree Algorithms.

    Get PDF
    Multiple bus networks (MBN) connect processors via buses. This dissertation addresses issues related to running binary-tree algorithms on MBNs. These algorithms are of a fundamental nature, and reduce inputs at leaves of a binary tree to a result at the root. We study the relationships between running time, degree (maximum number of connections per processor) and loading (maximum number of connections per bus). We also investigate fault-tolerance, meshes enhanced with MBNs, and VLSI layouts for binary-tree MBNs. We prove that the loading of optimal-time, degree-2, binary-tree MBNs is non-constant. In establishing this result, we derive three loading lower bounds Wn , W&parl0;n23&parr0; and W&parl0;nlogn&parr0; , each tighter than the previous one. We also show that if the degree is increased to 3, then the loading can be a constant. A constant loading degree-2 MBN exists, if the algorithm is allowed to run slower than the optimal. We introduce a new enhanced mesh architecture (employing binary-tree MBNs) that captures features of all existing enhanced meshes. This architecture is more flexible, allowing all existing enhanced mesh results to be ported to a more implementable platform. We present two methods for imparting tolerance to bus and processor faults in binary-tree MBNs. One of the methods is general, and can be used with any MBN and for both processor and bus faults. A key feature of this method is that it permits the network designer to designate a set of buses as unimportant and consider all faulty buses as unimportant. This minimizes the impact of faulty elements on the MBN. The second method is specific to bus faults in binary-tree MBNs, whose features it exploits to produce faster solutions. We also derive a series of results that distill the lower bound on the perimeter layout area of optimal-time, binary-tree MBNs to a single conjecture. Based on this we believe that optimal-time, binary-tree MBNs require no less area than a balanced tree topology even though such MBNs can reuse buses over various steps of the algorithm

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Conceptual design of a 10 to the 8th power bit magnetic bubble domain mass storage unit and fabrication, test and delivery of a feasibility model

    Get PDF
    The conceptual design of a highly reliable 10 to the 8th power-bit bubble domain memory for the space program is described. The memory has random access to blocks of closed-loop shift registers, and utilizes self-contained bubble domain chips with on-chip decoding. Trade-off studies show that the highest reliability and lowest power dissipation is obtained when the memory is organized on a bit-per-chip basis. The final design has 800 bits/register, 128 registers/chip, 16 chips/plane, and 112 planes, of which only seven are activated at a time. A word has 64 data bits +32 checkbits, used in a 16-adjacent code to provide correction of any combination of errors in one plane. 100 KHz maximum rotational frequency keeps power low (equal to or less than, 25 watts) and also allows asynchronous operation. Data rate is 6.4 megabits/sec, access time is 200 msec to an 800-word block and an additional 4 msec (average) to a word. The fabrication and operation are also described for a 64-bit bubble domain memory chip designed to test the concept of on-chip magnetic decoding. Access to one of the chip's four shift registers for the read, write, and clear functions is by means of bubble domain decoders utilizing the interaction between a conductor line and a bubble

    We Walk With Time, Time Does Not Walk With Us

    Get PDF
    The conceptual framework of Indigenous placemaking is defined as a fundamental and complex approach to the processes of the Indigenous planning paradigm. To identify placemaking is to acknowledge and recognize Indigenous place-based knowledge as essential planning tools when working with Indigenous communities. Colonization and western acculturization adjudicated the divestment of Indigenous languages and cultures through western policies and Indian school education. Today, Indigenous worldviews are tainted with extreme levels of sociocultural disparities. The implementation of Indigenous planning processes establishes an understanding to Indigenous community-building through shared knowledge and collaboration. The concepts of placemaking thus enables and empowers Indigenous communities to regenerate Indigenous knowledge production that is vital to the subsistence and continuation of language, culture, songs and prayers for future generations

    Regular Datapaths on Field-Programmable Gate Arrays

    Get PDF
    Field-Programmable Gate Arrays (FPGAs) are a recent kind of programmable logic device. They allow the implementation of integrated digital electronic circuits without requiring the complex optical, chemical and mechanical processes used in a conventional chip fabrication. FPGAs can be embedded in traditional system designflows to perform prototyping and emulation tasks. In addition, they also enable novel applications such as configurable computers with hardware dynamically adaptable to a specific problem. The growing chip capacity now allows even the implementation of CPUs and DSPs on single FPGAs. However, current design automation tools trace their roots to times of very limited FPGA sizes, and are primarily optimized for the implementation of random glue logic. The wide datapaths common to CPUs and DSPs are only processed with reduced performance. This thesis presents Structured Design Implementation (SDI), a suite of specialized tools coordinated by a common strategy, which aims to efficiently map even larger regular datapaths to FPGAs. In all steps, regularity is preserved whenever possible, or restored after disruptive operations were required. The circuits are composed from parametrizable modules providing a variety of logical, arithmetical and storage functions. For each module, multiple target FPGA-specific implementation alternatives may be generated in both gatelevel netlist and layout views. A floorplanner based on a genetic algorithm is then used to simultaneously choose an actual implementation from the set of alternatives for each module, and to arrange the selected module implementations in a linear placement. The floorplanning operation optimizes for short routing delays, high routability, and fit into the target FPGA.Field-Programmable Gate-Arrays (FPGAs) sind eine noch junge Art von programmierbaren Logikbausteinen. Sie erlauben die Implementierung von integrierten Digitalschaltungen ohne die komplizierten optischen, chemischen und mechanischen Prozesse, die normalerweise für die Chipfertigung erforderlich sind. FPGAs können im Rahmen konventioneller Entwurfsmethoden zu Emulationszwecken und Prototyp-Aufbauten herangezogen werden. Sie erlauben aber auch völlig neue Anwendungen wie rekonfigurierbare Computer, deren Hardware dynamisch an ein spezielles Problem angepaßt werden kann. Die gewachsene Chip-Kapazität erlaubt nun sogar die Implementierung von CPUs und digitalen Signalprozessoren (DSPs) auf einem einzelnen FPGA. Die Leistungsfähigkeit der entstandenen Schaltungen wird jedoch durch die zur Zeit erhältlichen CAD-Werkzeuge limitiert, da diese noch auf stark beschränkte FPGA-Größen ausgerichtet sind und primär der platzsparenden Verarbeitung unregelmäßiger Logik dienen. Die breiten Datenpfade in Bit-Slice-Struktur, die den Kern vieler CPUs und DSPs darstellen, werden nur suboptimal behandelt. Diese Arbeit stellt Structured Design Implementation (SDI) vor, ein System von spezialisierten CAD-Werkzeugen, die auch größere reguläre Datenpfade effizient auf FPGAs abbilden. In allen Verarbeitungsschritten wird dabei die bestehende Regularität soweit wie möglich erhalten oder nach regularitätsvernichtenden Operationen wiederhergestellt. Zur Schaltungseingabe steht eine Bibliothek von allgemeinen Modulen aus den Bereichen Logik, Arithmetik und Speicherung bereit. Diese können durch Belegung verschiedener Parameter wie Bit-Breiten und Datentypen an aktuelle Anforderungen angepaßt werden
    corecore