11,239 research outputs found

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Model-Based Adaptation of Software Communicating via FIFO Buffers

    Get PDF
    Software Adaptation is a non-intrusive solution for composing black-box components or services (peers) whose individual functionality is as required for the new system, but that present interface mismatch, which leads to deadlock or other undesirable behaviour when combined. Adaptation techniques aim at automatically generating new components called adapters. All the interactions among peers pass through the adapter, which acts as an orchestrator and makes the involved peers work correctly together by compensating for mismatch. Most of the existing solutions in this field assume that peers interact synchronously using rendezvous communication. However, many application areas rely on asynchronous communication models where peers interact exchanging messages via buffers. Generating adapters in this context becomes a difficult problem because peers may exhibit cyclic behaviour, and their composition often results in infinite systems. In this paper, we present a method for automatically generating adapters in asynchronous environments where peers interact using FIFO buffers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Dynamic update of discrete event controllers

    Get PDF
    Discrete event controllers are at the heart of many software systems that require continuous operation. Changing these controllers at runtime to cope with changes in its execution environment or system requirements change is a challenging open problem. In this paper we address the problem of dynamic update of controllers in reactive systems. We present a general approach to specifying correctness criteria for dynamic update and a technique for automatically computing a controller that handles the transition from the old to the new specification, assuring that the system will reach a state in which such a transition can correctly occur and in which the underlying system architecture can reconfigure. Our solution uses discrete event controller synthesis to automatically build a controller that guarantees both progress towards update and safe update

    Discrete events: Perspectives from system theory

    Get PDF
    Systems Theory;differentiaal/ integraal-vergelijkingen

    Modern software cybernetics: new trends

    Get PDF
    Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Logico-numerical Control for Software Components Reconfiguration

    Get PDF
    International audienceWe target the problem of the safe control of reconfigurations in component-based software systems, where strategies of adaptation to variations in both their environment and internal resource demands need to be enforced. In this context, the computing system involves software components that are subject to control decisions. We approach this problem under the angle of Discrete Event Systems (DES), involving properties on events observed during the execution (e.g., requests of computing tasks, work overload), and a state space representing different configurations such as activity or assemblies of components. We consider in particular the potential of applying novel logico-numerical control techniques to extend the expressivity of control models and objectives, thereby extending the application of DES in component-based software systems. We elaborate methodological guidelines for the application of logico-numerical control based on a case- study, and validate the result experimentally

    Modern software cybernetics: New trends

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research
    • …
    corecore