520 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt from the Development of a 5G Testbed Environment

    Get PDF
    The capacity and coverage requirements for 5 th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated deployment cost in the United Kingdom (UK) is predicted to be between £30bn and £50bn, whereas the current annual capital expenditure (CapEX) of the mobile network operators (MNOs) is £2.5bn. This prospect has vastly impacted and has become one of the major delaying factors for building the 5G physical infrastructure, whereas other areas of 5G are progressing at their speed. Due to the expensive and complicated nature of the network infrastructure and spectrum, the second-tier operators, widely known as mobile virtual network operators (MVNO), are entirely dependent on the MNOs. In this paper, an extensive study is conducted to explore the possibilities of reducing the 5G deployment cost and developing viable business models. In this regard, the potential of infrastructure, data, and spectrum sharing is thoroughly investigated. It is established that the use of existing public infrastructure (e.g., streetlights, telephone poles, etc.) has a potential to reduce the anticipated cost by about 40% to 60%. This paper also reviews the recent Ofcom initiatives to release location-based licenses of the 5G-compatible radio spectrum. Our study suggests that simplification of infrastructure and spectrum will encourage the exponential growth of scenario-specific cellular networks (e.g., private networks, community networks, micro-operators) and will potentially disrupt the current business models of telecommunication business stakeholders - specifically MNOs and TowerCos. Furthermore, the anticipated dense device connectivity in 5G will increase the resolution of traditional and non-traditional data availability significantly. This will encourage extensive data harvesting as a business opportunity and function within small and medium-sized enterprises (SMEs) as well as large social networks. Consequently, the rise of new infrastructures and spectrum stakeholders is anticipated. This will fuel the development of a 5G data exchange ecosystem where data transactions are deemed to be high-value business commodities. The privacy and security of such data, as well as definitions of the associated revenue models and ownership, are challenging areas - and these have yet to emerge and mature fully. In this direction, this paper proposes the development of a unified data hub with layered structured privacy and security along with blockchain and encrypted off-chain based ownership/royalty tracking. Also, a data economy-oriented business model is proposed. The study found that with the potential commodification of data and data transactions along with the low-cost physical infrastructure and spectrum, the 5G network will introduce significant disruption in the Telco business ecosystem

    A Spectrum Sharing Solution for the Efficient Use of mmWave Bands in 5G Cellular Scenarios

    Full text link
    Regulators all around the world have started identifying the portions of the spectrum that will be used for the next generation of cellular networks. A band in the mmWave spectrum will be exploited to increase the available capacity. In response to the very high expected traffic demand, a sharing mechanism may make it possible to use the spectrum more efficiently. In this work, moving within the European and Italian regulatory conditions, we propose the use of Licensed Spectrum Access (LSA) to coordinate sharing among cellular operators. Additionally, we show some preliminary results on our research activities which are focused on a dynamic spectrum sharing approach applied in simulated 5G cellular scenarios.Comment: to be published in IEEE International Symposium on Dynamic Spectrum Access Networks (IEEE DySPAN 2018), Seoul, Korea, Oct, 201

    Technical Rate of Substitution of Spectrum in Future Mobile Broadband Provisioning

    Full text link
    Dense deployment of base stations (BSs) and multi-antenna techniques are considered key enablers for future mobile networks. Meanwhile, spectrum sharing techniques and utilization of higher frequency bands make more bandwidth available. An important question for future system design is which element is more effective than others. In this paper, we introduce the concept of technical rate of substitution (TRS) from microeconomics and study the TRS of spectrum in terms of BS density and antenna number per BS. Numerical results show that TRS becomes higher with increasing user data rate requirement, suggesting that spectrum is the most effective means of provisioning extremely fast mobile broadband.Comment: 5 pages, 5 figures, conferenc

    Licensed Shared Access Evolution to Provide Exclusive and Dynamic Shared Spectrum Access for Novel 5G Use Cases

    Get PDF
    This chapter studies the Licensed Shared Access (LSA) concept, which was initially developed to enable the use of the vacant spectrum resources in 2.3–2.4 GHz band for mobile broadband (MBB) through long-term static licenses. The LSA system was developed to guarantee LSA licensees a predictable quality of service (QoS) and exclusive access to shared spectrum resources. This chapter describes the development and architecture of LSA for 2.3–2.4 GHz band and compares the LSA briefly to the Spectrum Access System (SAS) concept developed in the USA. 5G and its new use cases require a more dynamic approach to access shared spectrum resources than the LSA system developed for 2.3–2.4 GHz band can provide. Thus, a concept called LSA evolution is currently under development. The novel concepts introduced in LSA evolution include spectrum sensing, short-term license periods, possibility to allocate spectrum locally, and support for co-primary sharing, which can guarantee the quality of service (QoS) from spectrum perspective. The chapter also describes a demonstration of LSA evolution system with spectrum user prioritization, which was created for Programme Making and Special Events (PMSE) use case

    Location-specific Spectrum Sharing in Heterogeneous Networks

    Get PDF
    The popularity of wireless mobile communication with enormous production of smart devices and applications increases the number of users in the wireless network. This increase of mobile users in the wireless network results insatiable demand for additional bandwidth. To improve network capacity of mobile operators efficient use of spectrum is critical. To improve the system capacity of operators and to provide flexible use of spectrum, we investigate a localized spectrum sharing between operators located at the same geographical area. We provide a coordination mechanism for operators to form a common spectrum pool and to use it dynamically. The coordination between the operators is modeled using a game theoretical approach in a non-cooperative basis. We study the spectrum sharing at localized and non-localized level, where at localized level operators agree on spectrum sharing at small scale. In localized spectrum sharing operators share their spectrum at smaller areas, when compared to non-localized spectrum sharing. Through numerical simulation, we analyze the performance of localized and non-localized spectrum sharing in comparison to the default orthogonal spectrum sharing mechanism. From the simulation results, we conclude that localized spectrum sharing outperforms non-localized spectrum sharing. Thus, spectrum sharing at smaller areas provides a better performance improvement than spectrum sharing at larger geographical areas
    • …
    corecore