779 research outputs found

    Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services

    Full text link
    [EN] This paper presents the design and validation of a traceability system, based on radio frequency identification (RFID) technology and Internet of Things (IoT) services, intended to address the interconnection and cost-implementation problems typical in traceability systems. The RFID layer integrates temperature sensors into RFID tags, to track and trace food conditions during transportation. The IoT paradigm makes it possible to connect multiple systems to the same platform, addressing interconnection problems between different technology providers. The cost-implementation issues are addressed following the Data as a Service (DaaS) billing scheme, where users pay for the data they consume and not the installed equipment, avoiding the big initial investment that these high-tech solutions commonly require. The developed system is validated in two case scenarios, one carried out in controlled laboratory conditions, monitoring chopped pumpkin. Another case, carried out in a real scenario, monitors oranges sent from Valencia, Spain to Cork, Ireland.Urbano, O.; Perles, A.; Pedraza, C.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD.; Mercado Romero, R. (2020). Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services. Sensors. 20(4):1-19. https://doi.org/10.3390/s20041163119204Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172-184. doi:10.1016/j.foodcont.2013.11.007Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32-48. doi:10.1016/j.foodcont.2013.02.004Bechini, A., Cimino, M. G. C. A., Marcelloni, F., & Tomasi, A. (2008). Patterns and technologies for enabling supply chain traceability through collaborative e-business. Information and Software Technology, 50(4), 342-359. doi:10.1016/j.infsof.2007.02.017Badia-Melis, R., Mishra, P., & Ruiz-García, L. (2015). Food traceability: New trends and recent advances. A review. Food Control, 57, 393-401. doi:10.1016/j.foodcont.2015.05.005Timestrip Visual Indicators of Time and Temperaturehttps://timestrip.com/Storøy, J., Thakur, M., & Olsen, P. (2013). The TraceFood Framework – Principles and guidelines for implementing traceability in food value chains. Journal of Food Engineering, 115(1), 41-48. doi:10.1016/j.jfoodeng.2012.09.018Pizzuti, T., Mirabelli, G., Sanz-Bobi, M. A., & Goméz-Gonzaléz, F. (2014). Food Track & Trace ontology for helping the food traceability control. Journal of Food Engineering, 120, 17-30. doi:10.1016/j.jfoodeng.2013.07.017Landt, J. (2005). The history of RFID. IEEE Potentials, 24(4), 8-11. doi:10.1109/mp.2005.1549751Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D., & Menesatti, P. (2012). A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food and Bioprocess Technology, 6(2), 353-366. doi:10.1007/s11947-012-0958-7Mainetti, L., Mele, F., Patrono, L., Simone, F., Stefanizzi, M. L., & Vergallo, R. (2013). An RFID-Based Tracing and Tracking System for the Fresh Vegetables Supply Chain. International Journal of Antennas and Propagation, 2013, 1-15. doi:10.1155/2013/531364Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., … Menesatti, P. (2018). A Blockchain Implementation Prototype for the Electronic Open Source Traceability of Wood along the Whole Supply Chain. Sensors, 18(9), 3133. doi:10.3390/s18093133Aguzzi, J., Sbragaglia, V., Sarriá, D., García, J. A., Costa, C., Río, J. del, … Sardà, F. (2011). A New Laboratory Radio Frequency Identification (RFID) System for Behavioural Tracking of Marine Organisms. Sensors, 11(10), 9532-9548. doi:10.3390/s111009532Donelli, M. (2018). An RFID-Based Sensor for Masonry Crack Monitoring. Sensors, 18(12), 4485. doi:10.3390/s18124485De Souza, P., Marendy, P., Barbosa, K., Budi, S., Hirsch, P., Nikolic, N., … Davie, A. (2018). Low-Cost Electronic Tagging System for Bee Monitoring. Sensors, 18(7), 2124. doi:10.3390/s18072124Corchia, L., Monti, G., & Tarricone, L. (2019). A Frequency Signature RFID Chipless Tag for Wearable Applications. Sensors, 19(3), 494. doi:10.3390/s19030494Zuffanelli, S., Aguila, P., Zamora, G., Paredes, F., Martin, F., & Bonache, J. (2016). A High-Gain Passive UHF-RFID Tag with Increased Read Range. Sensors, 16(7), 1150. doi:10.3390/s16071150Monteleone, S., Sampaio, M., & Maia, R. F. (2017). A novel deployment of smart Cold Chain system using 2G-RFID-Sys temperature monitoring in medicine Cold Chain based on Internet of Things. 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). doi:10.1109/soli.2017.8120995Zou, Z., Chen, Q., Uysal, I., & Zheng, L. (2014). Radio frequency identification enabled wireless sensing for intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130313. doi:10.1098/rsta.2013.0313Azzarelli, J. M., Mirica, K. A., Ravnsbæk, J. B., & Swager, T. M. (2014). Wireless gas detection with a smartphone via rf communication. Proceedings of the National Academy of Sciences, 111(51), 18162-18166. doi:10.1073/pnas.1415403111Pies, M., Hajovsky, R., & Ozana, S. (2014). Wireless measurement of carbon monoxide concentration. 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). doi:10.1109/iccas.2014.6987843Azzara, A., Bocchino, S., Pagano, P., Pellerano, G., & Petracca, M. (2013). Middleware solutions in WSN: The IoT oriented approach in the ICSI project. 2013 21st International Conference on Software, Telecommunications and Computer Networks - (SoftCOM 2013). doi:10.1109/softcom.2013.6671886Ribeiro, A. R. L., Silva, F. C. S., Freitas, L. C., Costa, J. C., & Francês, C. R. (2005). SensorBus. Proceedings of the 3rd international IFIP/ACM Latin American conference on Networking - LANC ’05. doi:10.1145/1168117.1168119Sulc, V., Kuchta, R., & Vrba, R. (2010). IQRF Smart House - A Case Study. 2010 Third International Conference on Advances in Mesh Networks. doi:10.1109/mesh.2010.17Porkodi, R., & Bhuvaneswari, V. (2014). The Internet of Things (IoT) Applications and Communication Enabling Technology Standards: An Overview. 2014 International Conference on Intelligent Computing Applications. doi:10.1109/icica.2014.73EPC Radio-Frequency Identity Protocols. Generation-2 UHF RFIDhttps://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_2_0_0_standard_20131101.pdfUusitalo, M. (2006). Global Vision for the Future Wireless World from the WWRF. IEEE Vehicular Technology Magazine>, 1(2), 4-8. doi:10.1109/mvt.2006.283570Sung, J., Lopez, T. S., & Kim, D. (2007). The EPC Sensor Network for RFID and WSN Integration Infrastructure. Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW’07). doi:10.1109/percomw.2007.113Chunxiao Fan, Zhigang Wen, Fan Wang, & Yuexin Wu. (2011). A middleware of Internet of Things (IoT) based on ZigBee and RFID. IET International Conference on Communication Technology and Application (ICCTA 2011). doi:10.1049/cp.2011.0765Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60-67. doi:10.1109/mwc.2016.7721743Hai Liu, Bolic, M., Nayak, A., & Stojmenovic, I. (2008). Taxonomy and Challenges of the Integration of RFID and Wireless Sensor Networks. IEEE Network, 22(6), 26-35. doi:10.1109/mnet.2008.4694171Bertolini, M., Bevilacqua, M., & Massini, R. (2006). FMECA approach to product traceability in the food industry. Food Control, 17(2), 137-145. doi:10.1016/j.foodcont.2004.09.013Zhang, M., & Li, P. (2012). RFID Application Strategy in Agri-Food Supply Chain Based on Safety and Benefit Analysis. Physics Procedia, 25, 636-642. doi:10.1016/j.phpro.2012.03.137Engels, D. W., Kang, Y. S., & Wang, J. (2013). On security with the new Gen2 RFID security framework. 2013 IEEE International Conference on RFID (RFID). doi:10.1109/rfid.2013.6548148SINIEV: Un Centro Inteligente De Control De Tránsito Y Transporte Que Beneficiaría A Todo El Paíshttps://revistadelogistica.com/actualidad/siniev-un-centro-inteligente-de-control-de-transito-y-transporte-que-beneficiara-a-todo-el-pais/Tentzeris, M. M., Kim, S., Traille, A., Aubert, H., Yoshihiro, K., Georgiadis, A., & Collado, A. (2013). Inkjet-printed RFID-enabled sensors on paper for IoT and “Smart Skin” applications. ICECom 2013. doi:10.1109/icecom.2013.6684749Vega, F., Pantoja, J., Morales, S., Urbano, O., Arevalo, A., Muskus, E., … Hernandez, N. (2016). An IoT-based open platform for monitoring non-ionizing radiation levels in Colombia. 2016 IEEE Colombian Conference on Communications and Computing (COLCOM). doi:10.1109/colcomcon.2016.7516379Yang, K., & Jia, X. (2011). Data storage auditing service in cloud computing: challenges, methods and opportunities. World Wide Web, 15(4), 409-428. doi:10.1007/s11280-011-0138-0Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., Ijaz, M. F., & Syaekhoni, M. A. (2017). Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering, 212, 65-75. doi:10.1016/j.jfoodeng.2017.05.008Chen, R.-Y. (2015). Autonomous tracing system for backward design in food supply chain. Food Control, 51, 70-84. doi:10.1016/j.foodcont.2014.11.004Song, J., Wei, Q., Wang, X., Li, D., Liu, C., Zhang, M., & Meng, L. (2018). Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, 107, 130-136. doi:10.1016/j.foodres.2018.02.024Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, 22, 81-87. doi:10.1016/j.cofs.2018.02.003Rubio-Arraez, S., Capella, J. V., Castelló, M. L., & Ortolá, M. D. (2016). Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. Journal of Food Science and Technology, 53(10), 3642-3650. doi:10.1007/s13197-016-2319-4Carmona, L., Alquézar, B., Marques, V. V., & Peña, L. (2017). Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry, 237, 7-14. doi:10.1016/j.foodchem.2017.05.07

    The role of packaging in minimising food waste in the supply chain of the future

    Get PDF
    This report focuses on packaging opportunities that may help to reduce or recover food waste, proposes opportunities for industry to address food waste through innovative and sustainable primary, secondary and tertiary packaging. Food security is an emerging challenge for policy makers and companies in the food supply chain. The global population is expected to grow to 9 billion and demand for food by 77% by 2050. Over the same period food production will be under threat from climate change, competing land uses, erosion and diminishing supplies of clean water. One of the solutions to this dilemma is increased efficiency and waste reduction in the food supply chain. This report focuses on packaging opportunities that may help to reduce or recover food waste. Packaging has a vital role to play in containing and protecting food as it moves through the supply chain to the consumer. It already reduces food waste in transport and storage, and innovations in packaging materials, design and labelling provide new opportunities to improve efficiencies. Product protection needs to be the primary goal for packaging sustainability, and sometimes this requires trade-offs between packaging and food waste. The report draws on an international literature review and interviews with representatives from 15 organisations in the Australian food and packaging supply chain. It considers food waste along the entire food supply chain, but with a particular emphasis on food waste that occurs prior to consumption, i.e. during agriculture production, post-harvest handling and storage of raw materials, and in the commercial and industrial (C&I) sector consisting of food manufacturing, wholesale trade, food retail and distribution and food services. Food rescue through charities is also a focus of the report. Over 4.2 million tonnes of food waste is disposed to landfill in Australia each year. Around 1.5 million tonnes of this is from the commercial and industrial sector (the focus of this report), costing around $10.5 billion in waste disposal charges and lost product. The largest single contributor in the commercial and industrial sector is food service activities (e.g., cafes, restaurants, fast food outlets), which generate 661,000 tonnes of food waste per year, followed by food manufacturing (312,000 tonnes) and food retail (179,000 tonnes). Most waste in food manufacturing is unavoidable, and almost 90% is already recovered as animal feed, compost or energy

    Evidence on the Role of Supplier-retailer Trading Relationships and Practices in Waste Generation in the Food Chain

    Get PDF
    This report presents the results of the project entitled “Evidence on the role of supplier-retailer trading relationships and practices in waste generation in the food chain” commission by Defra (Project Code SFFSD0705) and undertaken by Cranfield University and IGD between July 2008 and June 2009. The overall aim of the project was to provide a qualitative analysis of the food and packaging waste arising from the link between food manufacturers and retailers in the UK. The specific objectives of the project were: To identify the root causes of waste between suppliers and retailers in the UK To assess the magnitude of each root cause To identify good practices and examine the enablers and inhibitors of their implementation To provide recommendations at a company and government level that will help the food and retail industries to jointly address the root causes of waste The study had a UK perspective and it focused on the relationship between food retailers and their suppliers, and how their business processes and practices affect waste. Waste of finished products, discarded by producers, wholesalers, hauliers or retailers was the primary focus, and waste arising during production and agricultural processes was excluded from the study. However, during the project we collected additional information concerning other stages of the chain and other countries, which we have used for comparative purposes

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the system’s utilization

    TRACEABILITY IN THE U.S. FOOD SUPPLY: ECONOMIC THEORY AND INDUSTRY STUDIES

    Get PDF
    This investigation into the traceability baseline in the United States finds that private sector food firms have developed a substantial capacity to trace. Traceability systems are a tool to help firms manage the flow of inputs and products to improve efficiency, product differentiation, food safety, and product quality. Firms balance the private costs and benefits of traceability to determine the efficient level of traceability. In cases of market failure, where the private sector supply of traceability is not socially optimal, the private sector has developed a number of mechanisms to correct the problem, including contracting, third-party safety/quality audits, and industry-maintained standards. The best-targeted government policies for strengthening firms' incentives to invest in traceability are aimed at ensuring that unsafe of falsely advertised foods are quickly removed from the system, while allowing firms the flexibility to determine the manner. Possible policy tools include timed recall standards, increased penalties for distribution of unsafe foods, and increased foodborne-illness surveillance.traceability, tracking, traceback, tracing, recall, supply-side management, food safety, product differentiation, Food Consumption/Nutrition/Food Safety, Industrial Organization,

    Benefits through Utilising EPC Network Components in Service‐Oriented Environments – an Analysis Using the Example of the Food Industry

    Get PDF
    Improvements in the food sector imply enhancements of delivering food which is safe, affordable, readily available, and of the quality and diversity consumers expect. However, prevalent information systems (IS) of companies in the food industry are not ready to support further significant improvements. They especially lack the capability to exchange relevant information in an efficient manner. Since recently, two major developments can be observed from IS perspective: the spreading of service-oriented architectures (SOA) as well as an increase in mass serialization (due to public and private traceability requirements, e.g.). So far, though most important due to food safety, a growing need to become more efficient as well as an increasing information demand of consumers, the food sector has attracted little attention in literature concerning an analysis about the potential of both service-orientation and the Electronic Product Code (EPC) Network. This is why this paper will investigate to which extent these two developments can contribute to facilitate food companies’ IS helping them to maintain their competiveness. As a starting point, the research paper will depict the state of the art including SOA and the EPC Network. After describing the research approach, it will proceed with a characterisation of the food sector including an examination why there is need for action. Based on current research findings as well as experience gathered in recent projects, the paper will investigate the application of the EPC Network with its three major components, i. e. EPCIS (EPC Information Services), ONS (Object Name Service) and the EPC Discovery Services, as part of future IS architectures in this sector. The paper will close with a discussion whether the envisioned IS architecture is appropriate to accomplish the previously identified challenges and requirements in the food sector in a more agile, efficient and effective way. What is more, it will highlight the most pressing challenges and provide an outlook as to the following steps of the research

    Towards a Diagnostic Instrument to Identify Improvement Opportunities for Quality Controlled Logistics in Agrifood Supply Chain Networks

    Get PDF
     Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios

    Monitoring cold chain logistics by means of RFID.

    Get PDF
    Every day, millions of tons of temperature sensitive goods are produced, transported, stored or distributed worldwide. For all these products the control of temperature is essential. The term “cold chain” describes the series of interdependent equipment and processes employed to ensure the temperature preservation of perishables and other temperaturecontrolled products from the production to the consumption end in a safe, wholesome, and good quality state (Zhang, 2007). In other words, it is a supply chain of temperature sensitive products. So temperature-control is the key point in cold chain operation and the most important factor when prolonging the practical shelf life of produce. Thus, the major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods (Ruiz-Garcia et al., 2007).These products can be perishable items like fruit, vegetables, flowers, fish, meat and dairy products or medical products like drugs, blood, vaccines, organs, plasma and tissues. All of them can have their properties affected by temperature changes. Also some chemicals and electronic components like microchips are temperature sensitive

    Study of internet usage in the fresh produce supply chain in the UK and China

    Get PDF
    A thesis submitted for the degree of Master of Philosophy of the University of BedfordshireFresh produce supply chain management faces a high level of complexity and uncertainty and a number of challenges due to fresh produce's perishable, seasonal and fragile characteristics. It is argued that effective implementation of Information and Communication Technologies (leTs) has great potential for improving efficiency and reducing wastage within the fresh produce (fruit and vegetable) supply chain. While' the Internet is used by many small and medium-sized enterprises (SMEs) in the fresh produce industry, the extent to which it is applied and further developed after the initial adoption varies widely. Much research has been carried out to investigate Internet adoption and usage, but very limited effort has been focused on the identification of the current level of technology integration and deve!opment and the factors affecting the level of the development after the adoption, especially in the context of SMEs in the fresh produce supply chain. This research attempts to address this issue by developing a theoretical framework to illustrate the evolutionary process of Internet adoption and diffusion and to identify factors affecting the development of Internet-based supply chains by following the Technological/Organisational/Environmental (TOE) framevork. First, five development levels of post-adoption of Internet technologies in the supply chain were defined, and factors from the technological, organisational and environmentalcontexts were identified according to literatures and exploratory interviews. Second, questionnaire surveys were conducted in the UK and China to investigate the current situation of internet technologies used by SMEs in the fresh produce supply chains in the two countries. Finally, factors the proposed framework were validated and discussed. The empirical findings show that the Internet is no longer a new technology for most fresh produce SMEs in the UK and China. However, a large proportion of SMEs surveyed are still using basic functions of the Internet, and there is little difference between the UK and Chinese SMEs when comparing the use of complex applications in the supply chains. The results also show that most of the factors in the organisational and technological contexts are positively related to the current development levels of the Internet-based supply chain, whereas, in the environmental context, pressures from customers in the UK and mutual trust among partners in China have a significant impact on current development levels. Additionally, in both countries, companies in a better development level of Internet-based supply chain would achieve a higher degree of integration in their supply chain in five years. Overall, the research has made a number of important contributions to knowledge, current debate and practice in an under-researched sector. The five-level post-adoption framework can be adapted to identify ICT development levels and key factors in other sectors. The empirical data collected has added value to and sheds lights on the current applications of the Internet in the supply chain in general, and in the fresh produce SMEs in China and the UK in particular. The key factors identified as impeding the further development of the Internet, such as factors related to the business environments in the UK and China, will help government policy-makers, supply chain facilitators and IT service providers to be more focused in their efforts to improve the situation and to stimulate the further diffusion of emerging Internet technologies. The research has certain limitations due to the time constraints and sample selections. These limitations provide a platform for directing future research
    corecore