1,042 research outputs found

    Application of neuro-fuzzy methods for stock market forecasting: a systematic review

    Get PDF
    Predicting stock prices is a challenging task owing to the market's chaos and uncertainty. Methods based on traditional approaches are unable to provide a solution to the market predictability issue. Thus, contemporary models using accurate neuro-fuzzy systems are found to be the most effective approach to tackling the problem. However, the existing literature lacks a detailed survey of the application of neuro-fuzzy techniques for stock market prediction. This paper presents a systematic literature review of the use of neuro-fuzzy systems for predicting stock market prices and trends.  On this basis, articles issued in various reputed international journals from 2000 to July 2022 were examined, 11 duplicates and 4 non-exclusive articles were removed and, as consequent, 24 eligible studies were retrieved for inclusion. Thus, analysis and discussions were based on two major viewpoints: predictor techniques and accuracy metrics. The review reveals that the researchers, based on their knowledge and research interests, applied a diverse neuro-fuzzy technique and shown stronger preference for certain neuro-fuzzy methods, such as ANFIS. To draw conclusions about the model performance, researchers chose different statistical and non-statistical metrics according to the technique used. It was finally observed that neuro-fuzzy approaches outperform, within its limits, conventional methods. However, each has its own set of constraints regarding the challenges involved in putting it into practice. The complexity of the presented approaches is the most significant potential obstacle that they face. Therefore, stock market prediction is a difficult undertaking, and multiple elements should be considered for accurate prediction. Yet, despite the subject's prominence, there are still promising new frontiers to explore and develop. Keywords: Fuzzy logic, Artificial neural network, Neuro-fuzzy, stock market forecasting JEL Classification: F37 Paper type: Theoretical Research  Predicting stock prices is a challenging task owing to the market's chaos and uncertainty. Methods based on traditional approaches are unable to provide a solution to the market predictability issue. Thus, contemporary models using accurate neuro-fuzzy systems are found to be the most effective approach to tackling the problem. However, the existing literature lacks a detailed survey of the application of neuro-fuzzy techniques for stock market prediction. This paper presents a systematic literature review of the use of neuro-fuzzy systems for predicting stock market prices and trends.  On this basis, articles issued in various reputed international journals from 2000 to July 2022 were examined, 11 duplicates and 4 non-exclusive articles were removed and, as consequent, 24 eligible studies were retrieved for inclusion. Thus, analysis and discussions were based on two major viewpoints: predictor techniques and accuracy metrics. The review reveals that the researchers, based on their knowledge and research interests, applied a diverse neuro-fuzzy technique and shown stronger preference for certain neuro-fuzzy methods, such as ANFIS. To draw conclusions about the model performance, researchers chose different statistical and non-statistical metrics according to the technique used. It was finally observed that neuro-fuzzy approaches outperform, within its limits, conventional methods. However, each has its own set of constraints regarding the challenges involved in putting it into practice. The complexity of the presented approaches is the most significant potential obstacle that they face. Therefore, stock market prediction is a difficult undertaking, and multiple elements should be considered for accurate prediction. Yet, despite the subject's prominence, there are still promising new frontiers to explore and develop. Keywords: Fuzzy logic, Artificial neural network, Neuro-fuzzy, stock market forecasting JEL Classification: F37 Paper type: Theoretical Research &nbsp

    Last mile delivery

    Get PDF
    Last mile delivery is one of the most complex processes in the whole logistics process. This is because it involves many uncertainties, such as weather conditions, road conditions, traffic, car accidents, delivery vehicle anomalies, choice of route, avoiding parcel damage and delivery errors, and communication with the retailer or the recipient of the parcel; all this makes the successful delivery of parcels at the customers’ doorstep difficult. In addition, today’s consumers have much greater expectations regarding delivery services, they demand to receive their parcels much faster or be able to choose the time and place of delivery. All this increases the cost of last mile delivery, accounting for 40% of overall supply chain costs. E-commerce giants such as Amazon can invest a large number of resources into creating optimal last mile delivery solutions, establish numerous warehouses throughout countries which enable them to store the parcels as close to the end user as possible. However, companies that do not have as many resources may find it difficult to satisfy the delivery expectations of their customers; longer and inflexible waiting times, as well as additional payment for delivery may cause companies to quickly lose competitiveness on the market. This means that companies must turn to technological solutions that are going to help them to improve their last mile delivery effectively but at a reasonably low price. Big Data are the basis of all smart solutions. This is because collecting large amounts of data makes it possible to extract information and make future predictions on the basis of past patterns

    Artificial Intelligence, social changes and impact on the world of education

    Get PDF
    The way in which humans acquire and share knowledge has been under constant evolution throughout times. Since the appearance of the first computers, education has changed dramatically. Now, as disruptive technologies are in full development, new opportunities arise for taking education to levels that have never been seen before. Ever since the coronavirus pandemic, the use of online teaching modalities has become widespread all over the world and the situation has caused the development of robust digital learning solutions an urgent need. At present, primary, secondary, third-level teaching and all sorts of courses may be delivered online, either in real-time or recorded for later viewing. Classes can be complemented with videos, documents or even interactive exercises. However, the institutions that used little or no technology prior to Covid-19 have found this situation overwhelming. The lack of knowledge regarding the digital teaching/learning tools available on the market and/or lack of knowledge regarding their use, means that educational institutions will not be able to take full advantage of the opportunities offered; poor use of technology in online classrooms may hinder the students’ progress

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions
    • 

    corecore