60 research outputs found

    Cyber Crime Detection and Prevention Techniques on Cyber Cased Objects Using SVM and Smote

    Get PDF
    Conventional cybersecurity employs crime prevention mechanisms over distributed networks. This demands crime event management at the network level where Detection and Prevention of cybercrimes is a must. A new Framework IDSEM has been introduced in this paper to handle the contemporary heterogeneous objects in cloud environment. This may aid for deployment of analytical tools over the network. A supervised machine learning algorithm like SVM has been implemented to support IDSEM. A machine learning technique Like SMOTE has been implemented to handle imbalanced classification of the sample data. This approach addresses imbalanced datasets by oversampling the minority classes. This will help to solve Social Engineering Attacks (SEA) like Phishing and Vishing. Classification mechanisms like decision trees and probability functions are used in this context. The IDSEM framework could minimize traffic across the cloud network and detect cybercrimes maximally. When results were compared with existing approaches, the results were found to be good, leading to the development of a unique SMOTE algorithm

    Centralized and distributed learning methods for predictive health analytics

    Get PDF
    The U.S. health care system is considered costly and highly inefficient, devoting substantial resources to the treatment of acute conditions in a hospital setting rather than focusing on prevention and keeping patients out of the hospital. The potential for cost savings is large; in the U.S. more than $30 billion are spent each year on hospitalizations deemed preventable, 31% of which is attributed to heart diseases and 20% to diabetes. Motivated by this, our work focuses on developing centralized and distributed learning methods to predict future heart- or diabetes- related hospitalizations based on patient Electronic Health Records (EHRs). We explore a variety of supervised classification methods and we present a novel likelihood ratio based method (K-LRT) that predicts hospitalizations and offers interpretability by identifying the K most significant features that lead to a positive prediction for each patient. Next, assuming that the positive class consists of multiple clusters (hospitalized patients due to different reasons), while the negative class is drawn from a single cluster (non-hospitalized patients healthy in every aspect), we present an alternating optimization approach, which jointly discovers the clusters in the positive class and optimizes the classifiers that separate each positive cluster from the negative samples. We establish the convergence of the method and characterize its VC dimension. Last, we develop a decentralized cluster Primal-Dual Splitting (cPDS) method for large-scale problems, that is computationally efficient and privacy-aware. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the agents to collaborate, while keeping every participant's data private. cPDS is proved to have an improved convergence rate compared to existing centralized and decentralized methods. We test all methods on real EHR data from the Boston Medical Center and compare results in terms of prediction accuracy and interpretability

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    Incremental multiclass open-set audio recognition

    Get PDF
    Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods

    Advanced Statistical Learning Techniques for High-Dimensional Imaging Data

    Get PDF
    With the rapid development of neuroimaging techniques, scientists are interested in identifying imaging biomarkers that are related to different subtypes or transitional stages of various cancers, neuropsychiatric diseases, and neurodegenerative diseases. Scalar-on-image models have been proven to demonstrate good performance in such tasks. However, due to their high dimensionality, traditional methods may not work well in the estimation of such models. Some existing penalization methods may improve the performance but fail to take the complex spatial structure of the neuroimaging data into account. In the past decade, the spatially regularized methods have been popular due to their good performance in terms of both estimation and prediction. Despite the progress, many challenges still remain. In particular, most existing image classification methods focus on binary classification and consequently may underperform for the tasks of classifying diseases with multiple subtypes or transitional stages. Moreover, neuroimaging data usually present significant heterogeneity across subjects. As a result, existing methods for homogeneous data may fail. In this dissertation, we investigate several new statistical learning techniques and propose a Spatial Multi-category Angle based Classifier (SMAC), a Subject Variant Scalar-on-Image Regression (SVSIR) model and a Masking Convolutional Neural Network (MCNN) model to address the above issues. Extensive simulation studies and practical applications in neuroscience are presented to demonstrate the effectiveness of our proposed methods.Doctor of Philosoph

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    • …
    corecore