1,145 research outputs found

    Data-Driven Optimization of Public Transit Schedule

    Full text link
    Bus transit systems are the backbone of public transportation in the United States. An important indicator of the quality of service in such infrastructures is on-time performance at stops, with published transit schedules playing an integral role governing the level of success of the service. However there are relatively few optimization architectures leveraging stochastic search that focus on optimizing bus timetables with the objective of maximizing probability of bus arrivals at timepoints with delays within desired on-time ranges. In addition to this, there is a lack of substantial research considering monthly and seasonal variations of delay patterns integrated with such optimization strategies. To address these,this paper makes the following contributions to the corpus of studies on transit on-time performance optimization: (a) an unsupervised clustering mechanism is presented which groups months with similar seasonal delay patterns, (b) the problem is formulated as a single-objective optimization task and a greedy algorithm, a genetic algorithm (GA) as well as a particle swarm optimization (PSO) algorithm are employed to solve it, (c) a detailed discussion on empirical results comparing the algorithms are provided and sensitivity analysis on hyper-parameters of the heuristics are presented along with execution times, which will help practitioners looking at similar problems. The analyses conducted are insightful in the local context of improving public transit scheduling in the Nashville metro region as well as informative from a global perspective as an elaborate case study which builds upon the growing corpus of empirical studies using nature-inspired approaches to transit schedule optimization.Comment: 20 pages, 6 figures, 2 table

    Bus timetable optimization model in response to the diverse and uncertain requirements of passengers for travel comfort

    Get PDF
    Most existing public transit systems have a fixed dispatching and service mode, which cannot effectively allocate resources from the perspective of the interests of all participants, resulting in resource waste and dissatisfaction. Low passenger satisfaction leads to a considerable loss of bus passengers and further reduces the income of bus operators. This study develops an optimization model for bus schedules that considers vehicle types and offers two service levels based on heterogeneous passenger demands. In this process, passenger satisfaction, bus company income, and government subsidies are considered. A bilevel model is proposed with a lower-level passenger ride simulation model and an upper-level multiobjective optimization model to maximize the interests of bus companies, passengers, and the government. To verify the effectiveness of the proposed methodology, a real-world case from Guangzhou is presented and analyzed using the nondominated sorting genetic algorithm-II (NSGA-II), and the related Pareto front is obtained. The results show that the proposed bus operation system can effectively increase the benefits for bus companies, passengers, and the governmen

    Optimization Methods in Modern Transportation Systems

    Get PDF
    One of the greatest challenges in the public transportation network is the optimization of the passengers waiting time, where it is necessary to find a compromise between the satisfaction of the passengers and the requirements of the transport companies. This paper presents a detailed review of the available literature dealing with the problem of passenger transport in order to optimize the passenger waiting time at the station and to meet the requirements of companies (maximize profits or minimize cost). After a detailed discussion, the paper clarifies the most important objectives in solving a timetabling problem: the requirements and satisfaction of passengers, passenger waiting time and capacity of vehicles. At the end, the appropriate algorithms for solving the set of optimization models are presented

    A short-turning policy for the management of demand disruptions in rapid transit systems

    Get PDF
    Rapid transit systems timetables are commonly designed to accommodate passenger demand in sections with the highest passenger load. However, disruptions frequently arise due to an increase in the demand, infrastructure incidences or as a consequence of fleet size reductions. All these circumstances give rise to unsupplied demand at certain stations, which generates passenger overloads in the available vehicles. The design of strategies that guarantee reasonable user waiting time with small increases of operation costs is now an important research topic. This paper proposes a tactical approach to determine optimal policies for dealing with such situations. Concretely, a short-turning strategy is analysed, where some vehicles perform short cycles in order to increase the frequency among certain stations of the lines and to equilibrate the train occupancy level. Turn-back points should be located and service offset should be determined with the objective of diminishing the passenger waiting time while preserving certain level of quality of service. Computational results and analysis for a real case study are provided.Junta de Andalucía P09-TEP-5022Natural Sciences and Engineering Research Council of Canada (NSERC) 39682-1

    Electromobility in Public Transport: Scheduling of Electric Vehicles and Location Planning of the Charging Infrastructure

    Get PDF
    In recent years, considerable efforts have been made to make public transport more environmentally friendly. This should primarily be achieved by reducing greenhouse gas emissions. Electromobility is considered to be a key technology as electric vehicles create a variety of benefits. However, the use of electric vehicles involves a number of challenges. Modern battery electric vehicles have only a fractional part of the ranges of combustion engine vehicles. Thus, a major challenge is charging the vehicles at specific charging stations to compensate for this disadvantage. Technological aspects of electric vehicles are also of importance and have to be considered. Planning tasks of public transport companies are affected by these challanges, especially vehicle scheduling. Vehicle scheduling is a well-studied optimization problem. The objective is to cover a given set of timetabled service trips by a set of vehicles at minimum costs. An issue strongly related to vehicle scheduling is location planning of the charging infrastructure. For an effcient use of electric vehicles, charging stations must be located at suitable locations in order to minimize operational costs. Location planning of charging stations is a long-term planning task whereas vehicle scheduling is a more short-term planning task in public transport. This thesis examines optimization methods for scheduling electric vehicles in public transport and location planning of the charging infrastructure. Electric vehicles' technological aspects are particularly considered. Case studies based on real-world data are used for evaluation of the artifacts developed. An exact optimization method addresses scheduling of mixed vehicles fleets consisting of electric vehicles and vehicles without range limitations. It is examined whether traditional solution methods for vehicle scheduling are able to cope with the challenges imposed by electric vehicles. The results show, that solution methods for vehicle scheduling are able to deal with the additional challenges to a certain degree. However, novel methods are required to fully deal with the requirements of electric vehicles. A heuristic solution method for scheduling electric vehicles and models for the charging process of batteries are developed. The impact of the detail level of electric vehicles' technological aspects on resulting solutions is analyzed. A computational study reveales major discrepancies between model assumptions and real charging behaviours. A metaheuristic solution method for the simultaneous optimization of location planning of charging stations and scheduling electric vehicles is designed to connect the optimization problems and to open up synergy effects. In comparison to a sequential planning, the simultaneous problem solving is necessary because a sequential planning generally leads to either infeasible solutions or to significant increases in costs.In den letzten Jahren wurden erhebliche Anstrengungen unternommen, um den öffentlichen Personennahverkehr (ÖPNV) umweltfreundlicher zu gestalten. Dabei sollen insbesondere Treibhausgasemissionen reduziert werden. Elektromobilität wird dabei auf Grund der zahlreichen Vorteile von Elektrofahrzeugen als Schlüsseltechnologie angesehen. Der Einsatz von Elektrofahrzeugen ist jedoch mit Herausforderungen verbunden, da diese über weitaus geringere Reichweiten im Vergleich zu Fahrzeugen mit Verbrennungsmotoren verfügen, weshalb ein Nachladen der Fahrzeugbatterien während des Betriebs notwendig ist. Zudem müssen technische Aspekte von Elektrofahrzeugen, wie beispielsweise Batteriealterungsprozesse, berücksichtigt werden. Die Fahrzeugeinsatzplanung als Teil des Planungsprozesses von Verkehrsunternehmen im ÖPNV ist besonders von diesen Herausforderungen betroffen. Diese legt den Fahrzeugeinsatz für die Bedienung der angebotenen Fahrplanfahrten bei Minimierung der Gesamtkosten fest. Die Standortplanung der Ladeinfrastruktur ist eng mit dieser Aufgabe verbunden, da für einen effizienten Einsatz der Fahrzeuge Ladestationen an geeigneten Orten errichtet werden müssen, um Betriebskosten zu minimieren. Die Planung der Ladeinfrastruktur ist ein langfristiges Planungsproblem, wohingegen die Fahrzeugeinsatzplanung eine eher kurzfristige Planungsaufgabe darstellt. Diese Dissertation befasst sich mit Optimierungsmethoden für die Fahrzeugeinsatzplanung mit Elektrofahrzeugen und mit der Standortplanung der Ladeinfrastruktur. Technische Aspekte von Elektrofahrzeugen werden dabei berücksichtigt. Die entwickelten Artefakte werden mit Hilfe von realen Datensätzen evaluiert. Durch eine exakte Optimierungsmethode für die Fahrzeugeinsatzplanung mit gemischten Fahrzeugflotten bestehend aus Fahrzeugen mit und ohne Reichweiterestriktionen wird die Anwendbarkeit von Optimierungsmethoden ohne Berücksichtigung von Reichweitebeschränkungen auf die Herausforderungen von Elektrofahrzeugen untersucht. Die Ergebnisse zeigen, dass herkömmliche Optimierungsmethoden für die neuen Herausforderungen bis zu einem gewissen Grad geeignet sind, es jedoch neuartige Lösungsmethoden erfordert, um den Anforderungen von Elektrofahrzeugen vollständig gerecht zu werden. Mit Hilfe einer heuristischen Lösungsmethode für die Fahrzeugeinsatzplanung mit Elektrofahrzeugen und Modellen für den Ladeprozess von Batterien wird untersucht, inwiefern sich der Detailgrad bei der Abbildung von Ladeprozessen auf resultierende Lösungen auswirkt. Erhebliche Unterschiede zwischen Modellannahmen und realen Gegebenheiten von Ladeprozessen werden herausgearbeitet. Durch ein metaheuristisches Lösungsverfahren für die simultane Optimierung der Standortplanung der Ladeinfrastruktur und der Fahrzeugeinsatzplanung werden beide Problemstellungen miteinander verbunden, um Synergieeffekte offenzulegen. Im Vergleich zu einer sequentiellen Planung ist ein simultanes Lösen notwendig, da ein sequentielles Lösen entweder zu unzulässigen Ergebnissen oder zu erheblichen Kostensteigerungen führt

    Optimization Models for Improving Bus Transit Services

    Get PDF
    To provide efficient public transportation services in areas with high demand variability over time, it may be desirable to switch vehicles between different types of services such as conventional services (with fixed routes and schedules) for high demand periods and flexible route services during low demand periods. Thus, this dissertation analyzes and compares conventional, flexible, and variable type bus service alternatives. Optimization formulations and numerical results show how the demand variability over time and other factors affect the relative effectiveness of such services. A model for connecting one terminal and one local region is solved with analytic optimization. Then, models are extended to consider multiple regions as well as multiple periods. Numerical results of problems for multiple regions and multiple periods are also discussed. Secondly, a problem of integration of bus transit services (i.e., conventional and flexible services) with mixed fleets of buses is explored. A hybrid method combining a genetic algorithm and analytic optimization is used. Numerical analyses confirm that the total system cost can be reduced by integrating bus services with mixed fleets and switching service types and vehicles over time among regions in order to better fit actual demand densities. The solution optimality and the sensitivity of results to several important parameters are also explored. Thirdly, transit ridership may be sensitive to fares, travel times, waiting times, and access times. Thus, elastic demands are considered in the formulations to maximize the system welfare for conventional and flexible services. Numerical examples find that with the input parameters assumed here, conventional services produce greater system welfare (consumer surplus + producer surplus) than flexible services. Numerical analysis finds that conventional and flexible services produce quite acceptable trips with the zero subsidies, compared to various financially constrained (subsidized) cases. For both conventional and flexible services, it is also found that total actual trips increase as subsidies increase. When the cost is fully subsidized, conventional services produce 79.2% of potential trips and flexible services produce 81.9% of potential trips. Several methods are applied to find solutions for nonlinear mixed integer formulations. Their advantages and disadvantages are also discussed in the conclusions section

    A GRASP approach for solving large scale electric bus scheduling problems

    Get PDF
    Electrifying public bus transportation is a critical step in reaching net-zero goals. In this paper, the focus is on the problem of optimal scheduling of an electric bus (EB) fleet to cover a public transport timetable. The problem is modelled using a mixed integer program (MIP) in which the charging time of an EB is pertinent to the battery’s state-of-charge level. To be able to solve large problem instances corresponding to real-world applications of the model, a metaheuristic approach is investigated. To be more precise, a greedy randomized adaptive search procedure (GRASP) algorithm is developed and its performance is evaluated against optimal solutions acquired using the MIP. The GRASP algorithm is used for case studies on several public transport systems having various properties and sizes. The analysis focuses on the relation between EB ranges (battery capacity) and required charging rates (in kW) on the size of the fleet needed to cover a public transport timetable. The results of the conducted computational experiments indicate that an increase in infrastructure investment through high speed chargers can significantly decrease the size of the necessary fleets. The results also show that high speed chargers have a more significant impact than an increase in battery sizes of the EBs
    corecore