2,177 research outputs found

    Context Modeling for Ranking and Tagging Bursty Features in Text Streams

    Get PDF
    Bursty features in text streams are very useful in many text mining applications. Most existing studies detect bursty features based purely on term frequency changes without taking into account the semantic contexts of terms, and as a result the detected bursty features may not always be interesting or easy to interpret. In this paper we propose to model the contexts of bursty features using a language modeling approach. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of a stream of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. ? 2010 ACM.EI

    Event detection, tracking, and visualization in Twitter: a mention-anomaly-based approach

    Full text link
    The ever-growing number of people using Twitter makes it a valuable source of timely information. However, detecting events in Twitter is a difficult task, because tweets that report interesting events are overwhelmed by a large volume of tweets on unrelated topics. Existing methods focus on the textual content of tweets and ignore the social aspect of Twitter. In this paper we propose MABED (i.e. mention-anomaly-based event detection), a novel statistical method that relies solely on tweets and leverages the creation frequency of dynamic links (i.e. mentions) that users insert in tweets to detect significant events and estimate the magnitude of their impact over the crowd. MABED also differs from the literature in that it dynamically estimates the period of time during which each event is discussed, rather than assuming a predefined fixed duration for all events. The experiments we conducted on both English and French Twitter data show that the mention-anomaly-based approach leads to more accurate event detection and improved robustness in presence of noisy Twitter content. Qualitatively speaking, we find that MABED helps with the interpretation of detected events by providing clear textual descriptions and precise temporal descriptions. We also show how MABED can help understanding users' interest. Furthermore, we describe three visualizations designed to favor an efficient exploration of the detected events.Comment: 17 page

    Mapping Topics and Topic Bursts in PNAS

    Full text link
    Scientific research is highly dynamic. New areas of science continually evolve;others gain or lose importance, merge or split. Due to the steady increase in the number of scientific publications it is hard to keep an overview of the structure and dynamic development of one's own field of science, much less all scientific domains. However, knowledge of hot topics, emergent research frontiers, or change of focus in certain areas is a critical component of resource allocation decisions in research labs, governmental institutions, and corporations. This paper demonstrates the utilization of Kleinberg's burst detection algorithm, co-word occurrence analysis, and graph layout techniques to generate maps that support the identification of major research topics and trends. The approach was applied to analyze and map the complete set of papers published in the Proceedings of the National Academy of Sciences (PNAS) in the years 1982-2001. Six domain experts examined and commented on the resulting maps in an attempt to reconstruct the evolution of major research areas covered by PNAS

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Precursors and Laggards: An Analysis of Semantic Temporal Relationships on a Blog Network

    Full text link
    We explore the hypothesis that it is possible to obtain information about the dynamics of a blog network by analysing the temporal relationships between blogs at a semantic level, and that this type of analysis adds to the knowledge that can be extracted by studying the network only at the structural level of URL links. We present an algorithm to automatically detect fine-grained discussion topics, characterized by n-grams and time intervals. We then propose a probabilistic model to estimate the temporal relationships that blogs have with one another. We define the precursor score of blog A in relation to blog B as the probability that A enters a new topic before B, discounting the effect created by asymmetric posting rates. Network-level metrics of precursor and laggard behavior are derived from these dyadic precursor score estimations. This model is used to analyze a network of French political blogs. The scores are compared to traditional link degree metrics. We obtain insights into the dynamics of topic participation on this network, as well as the relationship between precursor/laggard and linking behaviors. We validate and analyze results with the help of an expert on the French blogosphere. Finally, we propose possible applications to the improvement of search engine ranking algorithms

    Precursors and Laggards: An Analysis of Semantic Temporal Relationships on a Blog Network

    Full text link
    We explore the hypothesis that it is possible to obtain information about the dynamics of a blog network by analysing the temporal relationships between blogs at a semantic level, and that this type of analysis adds to the knowledge that can be extracted by studying the network only at the structural level of URL links. We present an algorithm to automatically detect fine-grained discussion topics, characterized by n-grams and time intervals. We then propose a probabilistic model to estimate the temporal relationships that blogs have with one another. We define the precursor score of blog A in relation to blog B as the probability that A enters a new topic before B, discounting the effect created by asymmetric posting rates. Network-level metrics of precursor and laggard behavior are derived from these dyadic precursor score estimations. This model is used to analyze a network of French political blogs. The scores are compared to traditional link degree metrics. We obtain insights into the dynamics of topic participation on this network, as well as the relationship between precursor/laggard and linking behaviors. We validate and analyze results with the help of an expert on the French blogosphere. Finally, we propose possible applications to the improvement of search engine ranking algorithms
    corecore