4,435 research outputs found

    Models and Performance of VANET based Emergency Braking

    Get PDF
    The network research community is working in the field of automotive to provide VANET based safety applications to reduce the number of accidents, deaths, injuries and loss of money. Several approaches are proposed and investigated in VANET literature, but in a completely network-oriented fashion. Most of them do not take into account application requirements and no one considers the dynamics of the vehicles. Moreover, message repropagation schemes are widely proposed without investigating their benefits and using very complicated approaches. This technical report, which is derived from the Master Thesis of Michele Segata, focuses on the Emergency Electronic Brake Lights (EEBL) safety application, meant to send warning messages in the case of an emergency brake, in particular performing a joint analysis of network requirements and provided application level benefits. The EEBL application is integrated within a Collaborative Adaptive Cruise Control (CACC) which uses network-provided information to automatically brake the car if the driver does not react to the warning. Moreover, an information aggregation scheme is proposed to analyze the benefits of repropagation together with the consequent increase of network load. This protocol is compared to a protocol without repropagation and to a rebroadcast protocol found in the literature (namely the weighted p-persistent rebroadcast). The scenario is a highway stretch in which a platoon of vehicles brake down to a complete stop. Simulations are performed using the NS_3 network simulation in which two mobility models have been embedded. The first one, which is called Intelligent Driver Model (IDM) emulates the behavior of a driver trying to reach a desired speed and braking when approaching vehicles in front. The second one (Minimizing Overall Braking Induced by Lane change (MOBIL)), instead, decides when a vehicle has to change lane in order to perform an overtake or optimize its path. The original simulator has been modified by - introducing real physical limits to naturally reproduce real crashes; - implementing a CACC; - implementing the driver reaction when a warning is received; - implementing different network protocols. The tests are performed in different situations, such as different number of lanes (one to five), different average speeds, different network protocols and different market penetration rates and they show that: - the adoption of this technology considerably decreases car accidents since the overall average maximum deceleration is reduced; - network load depends on application-level details, such as the implementation of the CACC; - VANET safety application can improve safety even with a partial market penetration rate; - message repropagation is important to reduce the risk of accidents when not all vehicles are equipped; - benefits are gained not only by equipped vehicles but also by unequipped ones

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    Get PDF
    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support

    Communications in Vehicular Ad Hoc Networks

    Get PDF

    Dependable wireless sensor networks for in-vehicle applications

    Get PDF

    A middleware protocol for time-critical wireless communication of large data samples

    Get PDF
    We present a middleware-based protocol that reliably synchronizes large samples consisting of multiple frames efficiently and within application level QoS requirements over a lossy wireless channel. The protocol uses a custom retransmission scheme, exploiting the latency requirements on sample level for frame level scheduling. It can be integrated into the popular DDS middleware. We investigate some technical limits of such a protocol and compare it to existing error protocols in the software stack and in the wireless protocol and combinations thereof. The comparison is based on an Omnet++ simulation using an established wireless channel error model. For evaluation, we take a use case from automated valet parking where infrastructure data provided via a wireless link augments in-vehicle sensor data. The use case respects the related safety requirements. Results show that the application awareness of the presented protocol, significantly improves service availability by transmitting data efficiently in time even under higher frame error rates

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201
    corecore