405 research outputs found

    Switching techniques for broadband ISDN

    Get PDF
    The properties of switching techniques suitable for use in broadband networks have been investigated. Methods for evaluating the performance of such switches have been reviewed. A notation has been introduced to describe a class of binary self-routing networks. Hence a technique has been developed for determining the nature of the equivalence between two networks drawn from this class. The necessary and sufficient condition for two packets not to collide in a binary self-routing network has been obtained. This has been used to prove the non-blocking property of the Batcher-banyan switch. A condition for a three-stage network with channel grouping and link speed-up to be nonblocking has been obtained, of which previous conditions are special cases. A new three-stage switch architecture has been proposed, based upon a novel cell-level algorithm for path allocation in the intermediate stage of the switch. The algorithm is suited to hardware implementation using parallelism to achieve a very short execution time. An array of processors is required to implement the algorithm The processor has been shown to be of simple design. It must be initialised with a count representing the number of cells requesting a given output module. A fast method has been described for performing the request counting using a non-blocking binary self-routing network. Hardware is also required to forward routing tags from the processors to the appropriate data cells, when they have been allocated a path through the intermediate stage. A method of distributing these routing tags by means of a non-blocking copy network has been presented. The performance of the new path allocation algorithm has been determined by simulation. The rate of cell loss can increase substantially in a three-stage switch when the output modules are non-uniformly loaded. It has been shown that the appropriate use of channel grouping in the intermediate stage of the switch can reduce the effect of non-uniform loading on performance

    A Fully Bidirectional Optical Network With Latency Monitoring Capability for the Distribution of Timing-Trigger and Control Signals in High-Energy Physics Experiments

    Get PDF
    The present paper discusses recent advances on a Passive Optical Network inspired Timing-Trigger and Control scheme for the future upgrade of the TTC system installed in the LHC experiments' and more specifically the currently known as TTCex to TTCrx link. The timing PON is implemented with commercially available FPGAs and 1-Gigabit Ethernet PON transceivers and provides a fixed latency gigabit downlink that can carry level-1 trigger accept decisions and commands as well as an upstream link for feedback from the front-end electronics

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Markov-modulated and feedback fluid queues

    Get PDF
    In the last twenty years the field of Markov-modulated fluid queues has received considerable attention. In these models a fluid reservoir receives and/or releases fluid at rates which depend on the actual state of a background Markov chain. In the first chapter of this thesis we give a short introduction on how the stationary distribution for such a model is usually found, as well as a literature overview on Markov-modulated and related uid queues. The rest of the thesis is concerned with �nding stationary distributions for some types of fluid models that have received little or no attention until now. The two main contributions are the following.\ud 1. We focus on models in which the state space of the regulating Markov process is infinitely large, either denumerable or not. Regarding the first type, we mainly look into regulating processes that are of birth-death type. We present procedures to find the stationary distribution, using the theory of orthogonal polynomials. In the nondenumerable case, we look into simple systems of fluid queues, in which one fluid queue regulates the behaviour of another (one example being a fluid tandem queue).\ud 2. We look into models in which the state of the fluid reservoir in quences the behaviour of the regulating process, so that the latter does not constitute a Markov process. We call suchlike systems feedback fluid queues, to emphasize the two-way dependence between fluid reservoir and regulating process

    Dynamic bandwidth scheduling and burst construction algorithm for downlink in (4G) mobile WiMAX networks

    Get PDF
    Advanced wireless systems, also called fourth generation (4G) wireless systems, such as Mobile Worldwide interoperability for Microwave Access (WiMAX), are developed to provide broadband wireless access in true sense. Therefore, it becomes mandatory for such kind of systems to provide Quality of Service (QoS) support for wide range of applications. In such types of systems, wireless base stations are responsible for distributing proper amount of bandwidth among different mobile users, thus satisfying a user’s QoS requirements. The task of distributing proper amount of bandwidth rests upon a scheduling algorithm, typically executed at the base station. 2G and 3G wireless systems are able to provide only voice, low data rate, and delay insensitive services, such as Web browsing. This is due to the lack of development in digital modulation and multiple access schemes, which are two major aspects of physical layer of these systems. Digital modulation is used to combat with location-dependent channel errors which get introduced in the data transmitted by base station on a wireless channel to a mobile station. Hence, different locations of every mobile station in a cell coverage area require different modulation and coding schemes for error-free transmission. Link adaptation is a technique that makes the use of variable modulation and coding schemes possible, according to varying location of mobile stations. This technique is used by 4G systems to achieve error free transmissions. 2G and 3G systems are not capable of achieving error-free transmissions in many cases due to significantly fewer or no choice of modulation and coding schemes for different locations of mobile stations. In such cases, most of the time, wireless channel is either error-prone or error-free for mobile station. Scheduling algorithms developed for 2G and 3G systems focussed on providing long term average rate requirements of users, which are satisfied at the expense of zero transmission for mobile users experiencing bad or error prone channel. This approach was adopted to achieve efficient use of wireless channel capacity. This was the best approach adopted by majority of scheduling algorithms because delay sensitive applications were not supported in such systems and hence bounded delay was not a matter of concern. Hence, the majority of the algorithms focussed on providing long term average rate requirements while maximizing cell throughput. This helped in making efficient use of wireless channel capacity at the expense of zero transmission for mobile users experiencing bad channel and compromising delay performance. These approaches, however, will not be suitable for 4G systems as such systems support wide range of applications ranging from delay-insensitive to highly delay-sensitive. Hence in this thesis, a dynamic bandwidth scheduling algorithm called Leaky Bucket Token Bank (LBTB) is proposed. This algorithm exploits some advanced features of 4G systems, like link adaptation and multiple access scheme, to achieve long term average rate requirements for delay-insensitive applications and bounded delay for delay-sensitive applications. Advanced features of 4G systems also bring more challenges. One such challenge is Orthogonal Frequency Division Multiple Access (OFDMA), a multiple access scheme deployed in 4G systems. In OFDMA, scheduled data for different mobile stations is packed into bursts and mapped to a two dimensional structure of time and frequency, called OFDMA frame. It has been observed that the way bursts are mapped to OFDMA frame affects the wakeup time of mobile stations receiving data and therefore causes power consumption. Wakeup time is the time duration in OFDMA frame for which the mobile station becomes active. Since OFDMA frame is a limited and precious radio resource, the efficient use of such radio resource is necessary. Efficient use requires that the wastage of such radio resource be minimized. Hence in this thesis, a burst construction algorithm called Burst Construction for Fairness in Power (BCFP) is also proposed. The algorithm attempts to achieve fairness in power consumption of different mobile stations by affecting their wakeup time. It also attempts to minimize wastage of radio resources. For comparing the performance of joint proposed algorithms (LBTB+BCFP), the proposed burst construction algorithm (BCFP) is joined to the two other existing scheduling algorithms namely: Token Bank Fair Queuing (TBFQ) and Adaptive Token Bank Fair Queuing (ATBFQ). TBFQ is an algorithm developed for 3G wireless networks whereas, ATBFQ is an extension to the TBFQ and is developed for 4G wireless networks. Therefore, the performance of the proposed algorithms jointly together (LBTB+BCFP) is compared with the joint TBFQ and proposed burst construction algorithm (TBFQ+BCFP), as well as joint ATBFQ and proposed burst construction algorithm (ATBFQ+BCFP). We compare the performance in terms of average queuing delay, average cell throughput, packet loss, fairness among different mobile users, fairness in average wakeup times (average power consumption), and fraction of radio resources wasted. The performance of proposed burst construction algorithm (BCFP) is also compared with Round Robin algorithm in terms of fairness in average power consumption as well as fraction of radio resources wasted, for varying number of users

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Characterizing, managing and monitoring the networks for the ATLAS data acquisition system

    Get PDF
    Particle physics studies the constituents of matter and the interactions between them. Many of the elementary particles do not exist under normal circumstances in nature. However, they can be created and detected during energetic collisions of other particles, as is done in particle accelerators. The Large Hadron Collider (LHC) being built at CERN will be the world's largest circular particle accelerator, colliding protons at energies of 14 TeV. Only a very small fraction of the interactions will give raise to interesting phenomena. The collisions produced inside the accelerator are studied using particle detectors. ATLAS is one of the detectors built around the LHC accelerator ring. During its operation, it will generate a data stream of 64 Terabytes/s. A Trigger and Data Acquisition System (TDAQ) is connected to ATLAS -- its function is to acquire digitized data from the detector and apply trigger algorithms to identify the interesting events. Achieving this requires the power of over 2000 computers plus an interconnecting network capable of sustaining a throughput of over 150 Gbit/s with minimal loss and delay. The implementation of this network required a detailed study of the available switching technologies to a high degree of precision in order to choose the appropriate components. We developed an FPGA-based platform (the GETB) for testing network devices. The GETB system proved to be flexible enough to be used as the ba sis of three different network-related projects. An analysis of the traffic pattern that is generated by the ATLAS data-taking applications was also possible thanks to the GETB. Then, while the network was being assembled, parts of the ATLAS detector started commissioning -- this task relied on a functional network. Thus it was imperative to be able to continuously identify existing and usable infrastructure and manage its operations. In addition, monitoring was required to detect any overload conditions with an indication where the excess demand was being generated. We developed tools to ease the maintenance of the network and to automatically produce inventory reports. We created a system that discovers the network topology and this permitted us to verify the installation and to track its progress. A real-time traffic visualization system has been built, allowing us to see at a glance which network segments are heavily utilized. Later, as the network achieves production status, it will be necessary to extend the monitoring to identify individual applications' use of the available bandwidth. We studied a traffic monitoring technology that will allow us to have a better understanding on how the network is used. This technology, based on packet sampling, gives the possibility of having a complete view of the network: not only its total capacity utilization, but also how this capacity is divided among users and software applicati ons. This thesis describes the establishment of a set of tools designed to characterize, monitor and manage complex, large-scale, high-performance networks. We describe in detail how these tools were designed, calibrated, deployed and exploited. The work that led to the development of this thesis spans over more than four years and closely follows the development phases of the ATLAS network: its design, its installation and finally, its current and future operation

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems
    corecore