170 research outputs found

    Burst Erasure Correction of 2D convolutional codes

    Get PDF
    In this paper we address the problem of decoding 2D convolutional codes over the erasure channel. In particular, we present a procedure to recover bursts of erasures that are distributed in a diagonal line. To this end we introduce the notion of balls around a burst of erasures which can be considered an analogue of the notion of sliding window in the context of 1D convolutional codes. The main result reduces the decoding problem of 2D convolutional codes to a problem of decoding a set of associated 1D convolutional codes

    Erasure Coding for Real-Time Streaming

    Full text link
    We consider a real-time streaming system where messages are created sequentially at the source, and are encoded for transmission to the receiver over a packet erasure link. Each message must subsequently be decoded at the receiver within a given delay from its creation time. The goal is to construct an erasure correction code that achieves the maximum message size when all messages must be decoded by their respective deadlines under a specified set of erasure patterns (erasure model). We present an explicit intrasession code construction that is asymptotically optimal under erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts of a limited length.Comment: Extended version of a conference paper in the IEEE International Symposium on Information Theory (ISIT), July 2012. 12 pages, 3 figure

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel

    Enabling error-resilient internet broadcasting using motion compensated spatial partitioning and packet FEC for the dirac video codec

    Get PDF
    Video transmission over the wireless or wired network require protection from channel errors since compressed video bitstreams are very sensitive to transmission errors because of the use of predictive coding and variable length coding. In this paper, a simple, low complexity and patent free error-resilient coding is proposed. It is based upon the idea of using spatial partitioning on the motion compensated residual frame without employing the transform coefficient coding. The proposed scheme is intended for open source Dirac video codec in order to enable the codec to be used for Internet broadcasting. By partitioning the wavelet transform coefficients of the motion compensated residual frame into groups and independently processing each group using arithmetic coding and Forward Error Correction (FEC), robustness to transmission errors over the packet erasure wired network could be achieved. Using the Rate Compatibles Punctured Code (RCPC) and Turbo Code (TC) as the FEC, the proposed technique provides gracefully decreasing perceptual quality over packet loss rates up to 30%. The PSNR performance is much better when compared with the conventional data partitioning only methods. Simulation results show that the use of multiple partitioning of wavelet coefficient in Dirac can achieve up to 8 dB PSNR gain over its existing un-partitioned method

    Investigation of the Use of Erasures in a Concatenated Coding Scheme

    Get PDF
    A new method for declaring erasures in a concatenated coding scheme is investigated. This method is used with the rate 1/2 K = 7 convolutional code and the (255, 223) Reed Solomon code. Errors and erasures Reed Solomon decoding is used. The erasure method proposed uses a soft output Viterbi algorithm and information provided by decoded Reed Solomon codewords in a deinterleaving frame. The results show that a gain of 0.3 dB is possible using a minimum amount of decoding trials
    corecore