17,023 research outputs found

    Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off

    Full text link
    Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we optimize edge coloring to differentiate bundled edges. We quantify strength of bundling in a flexible pairwise fashion between edges, and among bundled edges, we quantify how dissimilar their colors should be by dissimilarity of their origins and destinations. We solve the resulting nonlinear optimization, which is also interpretable as a novel dimensionality reduction task. In large graphs the necessary compromise is whether to differentiate colors sharply between locally occurring strongly bundled edges ("local bundles"), or also between the weakly bundled edges occurring globally over the graph ("global bundles"); we allow a user-set global-local tradeoff. We call the technique "peacock bundles". Experiments show the coloring clearly enhances comprehensibility of graph layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    MAMUD : contribution of HR satellite imagery to a better monitoring, modeling and understanding of urban dynamics

    Get PDF
    In this treatise the discussion of a methodology and results of semi-automatic city DSM extrac-tion from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, partly because of the steep changes in elevation caused by buildings and urban features. To make DSM extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research will concentrate, in first phase on the development of methods to optimize the extraction of photogrammetric products from the bundled Ikonos triplet. Optimal methods need to be found to improve the radiometry and geometry of the imagery, to improve the semi-automatically derivation of DSM’s and to improve the postprocessing of the products. Secondly we will also investigate the possibilities of creating stereo models out of images from the same sensor taken on a different date, e.g. one image of the stereo pair combined with the third image. Finally the photogrammetric products derived from the Ikonos stereo pair as well as the products created out of the triplet and the constructed stereo models will be investigated by comparison with a 3D reference. This evaluation should show the increase of accuracy when multi-imagery is used instead of stereo pairs

    A New System of Parallel Isolated Nonthermal Filaments Near the Galactic Center: Evidence for a Local Magnetic Field Gradient

    Full text link
    We report the discovery of a system of isolated nonthermal filaments approximately 0.5 deg. northwest (75 pc in projection) of Sgr A. Unlike other isolated nonthermal filaments which show subfilamentation, braiding of subfilaments, and flaring at their ends, these filaments are simple linear structures and more closely resemble the parallel bundled filaments in the Galactic center radio arc. However, the most unusual feature of these filaments is that the 20/90 cm spectral index uniformly decreases as a function of length, in contrast to all other nonthermal filaments in the Galactic center. This spectral gradient may not be due to simple particle aging but could be explained by a curved electron energy spectrum embedded in a diverging magnetic field. If so, the scale of the magnetic gradient is not consistent with a large scale magnetic field centered on Sgr A* suggesting that this filament system is tracing a local magnetic field.Comment: 10 pages, AASTeX 5.01 LaTeX2e; 7 figures in 9 PostScript files; scheduled for publication in the 2001 December 10, v. 563 issue of Ap

    Relay: A New IR for Machine Learning Frameworks

    Full text link
    Machine learning powers diverse services in industry including search, translation, recommendation systems, and security. The scale and importance of these models require that they be efficient, expressive, and portable across an array of heterogeneous hardware devices. These constraints are often at odds; in order to better accommodate them we propose a new high-level intermediate representation (IR) called Relay. Relay is being designed as a purely-functional, statically-typed language with the goal of balancing efficient compilation, expressiveness, and portability. We discuss the goals of Relay and highlight its important design constraints. Our prototype is part of the open source NNVM compiler framework, which powers Amazon's deep learning framework MxNet
    • …
    corecore