451 research outputs found

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)

    Playing With Population Protocols

    Full text link
    Population protocols have been introduced as a model of sensor networks consisting of very limited mobile agents with no control over their own movement: A collection of anonymous agents, modeled by finite automata, interact in pairs according to some rules. Predicates on the initial configurations that can be computed by such protocols have been characterized under several hypotheses. We discuss here whether and when the rules of interactions between agents can be seen as a game from game theory. We do so by discussing several basic protocols

    Algebraic Approach to Timed Petri Nets

    Get PDF
    One aspect often needed when modelling systems of any kind is time-based analysis, especially for real-time or in general time-critical systems. Algebraic place/transition (P/T) nets do not inherently provide a way to model the passing of time or to restrict the firing behaviour with regards to passing time. In this paper, we present an extension of algebraic P/T nets by adding time durations to transitions and timestamps to tokens. We define categories for different timed net classes and functorial relations between them. Our first result is the definition of morphisms preserving firing behaviour for all timed net classes. As second result, we define structuring techniques for timed P/T nets in a way that our category fulfills the properties of M-adhesive systems, a general categorical framework for structuring and transforming high-level algebraic structures. We demonstrate our approach by applying it to model a real-time communication network
    corecore