553 research outputs found

    Dependable Digitally-Assisted Mixed-Signal IPs Based on Integrated Self-Test & Self-Calibration

    Get PDF
    Heterogeneous SoC devices, including sensors, analogue and mixed-signal front-end circuits and the availability of massive digital processing capability, are being increasingly used in safety-critical applications like in the automotive, medical, and the security arena. Already a significant amount of attention has been paid in literature with respect to the dependability of the digital parts in heterogeneous SoCs. This is in contrast to especially the sensors and front-end mixed-signal electronics; these are however particular sensitive to external influences over time and hence determining their dependability. This paper provides an integrated SoC/IP approach to enhance the dependability. It will give an example of a digitally-assisted mixed-signal front-end IP which is being evaluated under its mission profile of an automotive tyre pressure monitoring system. It will be shown how internal monitoring and digitally-controlled adaptation by using embedded processors can help in terms of improving the dependability of this mixed-signal part under harsh conditions for a long time

    In-field Built-in Self-test for Measuring RF Transmitter Power and Gain

    Get PDF
    abstract: RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). However, this conversion circuitry is subject to similar process, voltage, and temperature (PVT) variations as the DUT and affects the measurement accuracy. So, it is important to monitor BIST performance over time, voltage and temperature, such that accurate in-field measurements can be performed. In this research, a multistep BIST solution using only baseband signals for test analysis is presented. An on-chip signal generation circuit, which is robust with respect to time, supply voltage, and temperature variations is used for self-calibration of the BIST system before the DUT measurement. Using mathematical modelling, an analytical expression for the output signal is derived first and then test signals are devised to extract the output power of the DUT. By utilizing a standard 180nm IBM7RF CMOS process, a 2.4GHz low power RF IC incorporated with the proposed BIST circuitry and on-chip test signal source is designed and fabricated. Experimental results are presented, which show this BIST method can monitor the DUT’s output power with +/- 0.35dB accuracy over a 20dB power dynamic range.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Testing of Analog and RF Circuits using Embedded Sensors

    Get PDF
    Testing of on - chip RF and microwave circuits has always been a challenge to the test engineers. Since the emergence of System - on - a - Chip (SoC), characterization and test de vel op ment is time - consuming, they contribute to a significant part of the manufacturing cost. Moreover, test development of RF and microwave circuits requires years of experience and expertise. In this paper, we propose to use built - in - test in the form of specific sensors. Instead of testing the devices specifically for certain performance metrics, the output values of the sensors, which are usually DC or a very low frequency signal, can b e used to get a quick and accurate estimate of the behavior of the devic e under test (DUT). For a relatively low - yielding process, which is usually the case for RF and microwave circuits, significant number of faulty devices can be identified without even performing the standard manufacturing test on the devices. Moreover, the se sensors can also be used for on - line test. In this paper, we also propose an algorithm to optimally place the sensors at the output of a system - under - test and use the sensor output to get an estimate of the specifications of the system - under - test. Using this method, specifications can be estimated within an accuracy of ± 3% of its actual value

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    LOFAR: first of a new generation of radio telescopes

    Get PDF
    Aperture plane detection of cosmic radio signals can confer several important advantages. The mechanical signal processing of conventional parabolic dish antennas can be replaced by signal processing purely in electronics and software, thereby placing aperture plane array instruments in a regime with decreasing future costs. Aperture arrays using all-sky element antennas also allow multiple, independent, full sensitivity telescopes to be formed in software. The Low Frequency Array (LOFAR) project aims to realize these advantages in a previously largely unexplored frequency domain, 10-240 MHz. Consisting of up to eight shared aperture telescopes operated independently over internet, it will explore the epoch of re-ionization, open the transient radio Universe to systematic study, record ultra-high energy cosmic particles and add a new dimension to solar and space physics research

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed
    • …
    corecore