916 research outputs found

    A sigma-delta interface built-in self-test and calibration for microelectromechanical system accelerometer's utilizing interpolation method

    Get PDF
    This work presents the capacitive micromechanical accelerometer with a completely differential high-order switched capacitor sigma-delta modulator interface. Such modulation interface circuit generates one-bit output data using a third sigma-delta modulator low-noise front-end, doing away with the requirement for a second enhanced converter of resolution to encode the feedback route analog signal. A capacitive micromechanical sensor unit with just a greater quality factor has been specifically employed to give greater resolution. The closed-loop and electrical correction control are used to dampen the high-Q values to get the system's stability with high-order. This microelectromechanical system (MEMS) capacitive accelerometer was calibrated using a lookup table and Akima interpolation to find manufacturing flaws by recalculating voltage levels for the test electrodes. To determine the proper electrode voltages for fault compensation, COMSOL software simulates a number of defects upon that spring as well as the fingers of the sensor system. When it comes time for the feedback phase of a proof mass displacement correction, these values are subsequently placed in the lookup table

    Microfluidic devices for photo-and spectroelectrochemical applications

    Get PDF
    The review presents recent developments in electrochemical devices for photo- and spectroelectrochemical investigations, with the emphasis on miniaturization (i.e., nanointerdigitated complementary metal-oxide-semiconductor devices, micro- and nano-porous silicon membranes or microoptoelectromechanical systems), silica glass/microreactors (i.e., plasmonic, Raman spectroscopy or optical microcavities) or polymer-based devices (i.e., 3D-printed, laser-engraved channels). Furthermore, we have evaluated inter alia the efficiency of various fabrication approaches for bioelectrochemical systems, biocatalysis, photochemical synthesis, or single nanoparticle spectroelectrochemistry. We envisioned the miniaturization of applied techniques such as cathodoluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy, voltametric and amperometric methods in the spectroelectrochemical microdevices. The research challenges and development perspectives of microfluidic, and spectroelectrochemical devices were also elaborated on.publishedVersio

    System Integration - A Major Step toward Lab on a Chip

    Get PDF
    Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications

    Particle dynamics in magneto-fluidic microsystems

    Get PDF
    The trend in microfluidics and lab-on-a-chip is to miniaturize and integrate many functions in a single chip, while achieving a high functional performance. To reach fast processing and a high sensitivity at the same time, recent lab-on-a-chip approaches use high-volume preparation steps together with micro-scaled detection techniques. One of the challenges is to solve transport limitations within microfluidic processes. Using superparamagnetic particles as actuation vehicles in lab-on-a-chip systems appears to be a promising approach. However, the full control of particle motion in direction and velocity remains complicated. In this thesis we investigate the interactions between neighboring particles, surrounding fluid and nearby walls. We found that these effects highly influence the dynamics of the particle loaded fluid. First particle dynamics in open fluid volumes was studied using an experimental setup containing a sub-microliter fluid volume surrounded by four miniaturized electromagnets for particle actuation. On the basis of optical velocity measurements, the induced motion of single particles and ordered particle chains was analyzed. Experiments on single particles revealed velocities that highly vary between particles and also the average measured velocity was found to deviate from theoretical predictions, which we attributed to non-uniform magnetic particle properties. Equations for the influence of particle chain formation on magnetization and hydrodynamics have been established, and show an increasing logarithmic dependence of the velocity as function of the chain length. Experimental studies on rotating particle chains showed transient regimes for the chain shape including chain rupture events, which could be reconstructed with a mechanistic pin-joint model based on magnetic and hydrodynamic inter-particle forces. Furthermore, within spatial confinements of a microsystem, we studied the interactions between particles, fluid, and nearby walls. An experimental setup was built providing a constant magnetic force on individual particles dispersed in a microchannel. The hydrodynamic interactions appeared to generate unforeseen self-organization phenomena. Superparamagnetic particles aligned on the channel axis successively organize towards a stable poly-twin system, which could be explained by a 1-dimensional model based on the flow profile along the axis. In addition, particles traveling close to a channel wall show complex rotation transitions that result in s-shaped trajectories while focusing towards the channel center, which could be explained by self-induced fluid velocity gradients within the channel. Using micro-scaled flux guides to generate high magnetic field gradients, the particles reached amplified velocities and could be controlled in their circular pathways within the channels. On system level, the fluid driving efficiency of the observed particle configurations were evaluated with numerical simulation models. Axially aligned particles appear to be very efficient for fluid pumping through channels. The efficiency can be tuned by the particle to channel radius and the particle spacing. The off-axis counter-rotating particles appear to enhance near-surface mixing. Integrated fluid actuation by magnetic particles is demonstrated in micro pore systems, where pressure-driven techniques are ineffective for the exchange of fluids. Our experimental investigations and theoretical analyses lead to a better understanding of particle dynamics, in order to improve the functional performance of magneto-fluidic microsystem

    Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    Get PDF
    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications

    Micromachined three-dimensional electrode arrays for in-vitro and in-vivo electrogenic cellular networks

    Get PDF
    This dissertation presents an investigation of micromachined three-dimensional microelectrode arrays (3-D MEAs) targeted toward in-vitro and in-vivo biomedical applications. Current 3-D MEAs are predominantly silicon-based, fabricated in a planar fashion, and are assembled to achieve a true 3-D form: a technique that cannot be extended to micro-manufacturing. The integrated 3-D MEAs developed in this work are polymer-based and thus offer potential for large-scale, high volume manufacturing. Two different techniques are developed for microfabrication of these MEAs - laser micromachining of a conformally deposited polymer on a non-planar surface to create 3-D molds for metal electrodeposition; and metal transfer micromolding, where functional metal layers are transferred from one polymer to another during the process of micromolding thus eliminating the need for complex and non-repeatable 3-D lithography processes. In-vitro and in-vivo 3-D MEAs are microfabricated using these techniques and are packaged utilizing Printed Circuit Boards (PCB) or other low-cost manufacturing techniques. To demonstrate in-vitro applications, growth of 3-D co-cultures of neurons/astrocytes and tissue-slice electrophysiology with brain tissue of rat pups were implemented. To demonstrate in-vivo application, measurements of nerve conduction were implemented. Microelectrode impedance models, noise models and various process models were evaluated. The results confirmed biocompatibility of the polymers involved, acceptable impedance range and noise of the microelectrodes, and potential to improve upon an archaic clinical diagnostic application utilizing these 3-D MEAs.Ph.D.Committee Chair: Mark G. Allen; Committee Member: Elliot L. Chaikof; Committee Member: Ionnis (John) Papapolymerou; Committee Member: Maysam Ghovanloo; Committee Member: Oliver Bran

    A housekeeping prognostic health management framework for microfluidic systems

    Get PDF
    Micro-Electro-Mechanical Systems (MEMS) and Microfluidics are becoming popular solutions for sensing, diagnostics and control applications. Reliability and validation of function is of increasing importance in the majority of these applications. On-line testing strategies for these devices have the potential to provide real-time condition monitoring information. It is shown that this information can be used to diagnose and prognose the health of the device. This information can also be used to provide an early failure warning system by predicting the remaining useful life. Diagnostic and prognostic outcomes can also be leveraged to improve the reliability, dependability and availability of these devices. This work has delivered a methodology for a β€œlightweight” prognostics solution for a microfluidic device based on real-time diagnostics. An oscillation based test methodology is used to extract diagnostic information that is processed using a Linear Discriminant Analysis based classifier. This enables the identification of current health based on pre-defined health levels. As the deteriorating device is periodically classified, the rate at which the device degrades is used to predict the devices remaining useful life

    HIGH PERFORMANCE PIEZOELECTRIC MATERIALS AND DEVICES FOR MULTILAYER LOW TEMPERATURE CO-FIRED CERAMIC BASED MICROFLUIDIC SYSTEMS

    Get PDF
    The incorporation of active piezoelectric elements and fluidic components into micro-electromechanical systems (MEMS) is of great interest for the development of sensors, actuators, and integrated systems used in microfluidics. Low temperature cofired ceramics (LTCC), widely used as electronic packaging materials, offer the possibility of manufacturing highly integrated microfluidic systems with complex 3-D features and various co-firable functional materials in a multilayer module. It would be desirable to integrate high performance lead zirconate titanate (PZT) based ceramics into LTCC-based MEMS using modern thick film and 3-D packaging technologies. The challenges for fabricating functional LTCC/PZT devices are: 1) formulating piezoelectric compositions which have similar sintering conditions to LTCC materials; 2) reducing elemental inter-diffusion between the LTCC package and PZT materials in co-firing process; and 3) developing active piezoelectric layers with desirable electric properties. The goal of present work was to develop low temperature fired PZT-based materials and compatible processing methods which enable integration of piezoelectric elements with LTCC materials and production of high performance integrated multilayer devices for microfluidics. First, the low temperature sintering behavior of piezoelectric ceramics in the solid solution of Pb(Zr0.53,Ti0.47)O3-Sr(K0.25, Nb0.75)O3 (PZT-SKN) with sintering aids has been investigated. 1 wt% LiBiO2 + 1 wt% CuO fluxed PZT-SKN ceramics sintered at 900oC for 1 h exhibited desirable piezoelectric and dielectric properties with a reduction of sintering temperature by 350oC. Next, the fluxed PZT-SKN tapes were successfully laminated and co-fired with LTCC materials to build the hybrid multilayer structures. HL2000/PZT-SKN multilayer ceramics co-fired at 900oC for 0.5 h exhibited the optimal properties with high field d33 piezoelectric coefficient of 356 pm/V. A potential application of the developed LTCC/PZT-SKN multilayer ceramics as a microbalance was demonstrated. The final research focus was the fabrication of an HL2000/PZT-SKN multilayer piezoelectric micropump and the characterization of pumping performance. The measured maximum flow rate and backpressure were 450 ΞΌl/min and 1.4 kPa respectively. Use of different microchannel geometries has been studied to improve the pumping performance. It is believed that the high performance multilayer piezoelectric devices implemented in this work will enable the development of highly integrated LTCC-based microfluidic systems for many future applications

    Applications of Integrated Polymer Waveguides in Microsystems

    Get PDF
    • …
    corecore