22,446 research outputs found

    Quiescent current testing of CMOS data converters

    Get PDF
    Power supply quiescent current (IDDQ) testing has been very effective in VLSI circuits designed in CMOS processes detecting physical defects such as open and shorts and bridging defects. However, in sub-micron VLSI circuits, IDDQ is masked by the increased subthreshold (leakage) current of MOSFETs affecting the efficiency of IÂŹDDQ testing. In this work, an attempt has been made to perform robust IDDQ testing in presence of increased leakage current by suitably modifying some of the test methods normally used in industry. Digital CMOS integrated circuits have been tested successfully using IDDQ and IDDQ methods for physical defects. However, testing of analog circuits is still a problem due to variation in design from one specific application to other. The increased leakage current further complicates not only the design but also testing. Mixed-signal integrated circuits such as the data converters are even more difficult to test because both analog and digital functions are built on the same substrate. We have re-examined both IDDQ and IDDQ methods of testing digital CMOS VLSI circuits and added features to minimize the influence of leakage current. We have designed built-in current sensors (BICS) for on-chip testing of analog and mixed-signal integrated circuits. We have also combined quiescent current testing with oscillation and transient current test techniques to map large number of manufacturing defects on a chip. In testing, we have used a simple method of injecting faults simulating manufacturing defects invented in our VLSI research group. We present design and testing of analog and mixed-signal integrated circuits with on-chip BICS such as an operational amplifier, 12-bit charge scaling architecture based digital-to-analog converter (DAC), 12-bit recycling architecture based analog-to-digital converter (ADC) and operational amplifier with floating gate inputs. The designed circuits are fabricated in 0.5 ÎŒm and 1.5 ÎŒm n-well CMOS processes and tested. Experimentally observed results of the fabricated devices are compared with simulations from SPICE using MOS level 3 and BSIM3.1 model parameters for 1.5 ÎŒm and 0.5 ÎŒm n-well CMOS technologies, respectively. We have also explored the possibility of using noise in VLSI circuits for testing defects and present the method we have developed

    Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test methods

    Get PDF
    This work presents a case study, which attempts to improve the fault diagnosis and testability of the oscillation testing methodology applied to a typical two-stage CMOS operational amplifier. The proposed test method takes the advantage of good fault coverage through the use of a simple oscillation based test technique, which needs no test signal generation and combines it with quiescent supply current (IDDQ) testing to provide a fault confirmation. A built in current sensor (BICS), which introduces insignificant performance degradation of the circuit-under-test (CUT), has been utilized to monitor the power supply quiescent current changes in the CUT. The testability has also been enhanced in the testing procedure using a simple fault-injection technique. The approach is attractive for its simplicity, robustness and capability of built-in-self test (BIST) implementation. It can also be generalized to the oscillation based test structures of other CMOS analog and mixed-signal integrated circuits. The practical results and simulations confirm the functionality of the proposed test method

    A 3D IC BIST for pre-bond test of TSVs using Ring Oscillators

    Get PDF
    International audience3D stacked integrated circuits based on Through Silicon Vias (TSV) are promising with their high performances and small form factor. However, these circuits present many test issues, especially for TSVs. In this paper we propose a novel Built-In-Self-Test (BIST) architecture for pre-bond testing of TSVs in 3D stacked integrated circuits. The main idea is to measure the variation of TSVs capacitances in order to detect defective TSVs. The BIST architecture is based on ring oscillators, frequencies of which depend on TSVs capacitances. The proposed BIST is integrated within the JTAG standard. This paper presents spice simulation results and logic synthesis results of the proposed TSV ring oscillator structure using a 65 nm CMOS technology, including 10 ÎŒm diameter TSV middle technology. Due to local process variations, the proposed test architecture is limited in accuracy; it detects only large capacitive faults on TSVs

    A Built-In-Test Circuit for Functional Verification & PVT Variations Monitoring of CMOS RF Circuits

    Get PDF
    Built-In-Test (BIT) for Radio Frequency (RF) integrated circuits can reduce the testing cost, especially with the increase of integration level and operating frequency. A fully integrated CMOS BIT detection circuit is presented in this work. This BIT detection circuit is rectifier-based and low threshold voltage diode-connected MOS transistor with substrate positively-biased is used to improve the detecting sensitivity. As an example, a 2.4GHz LNA is used, the high frequency small signal gain is extracted and the gain fluctuation due to Process, supply Voltage and Temperature (PVT) variations is also investigated. The simulation results show that this BIT detection circuit can realize on-chip functional verification of RF circuits and also monitor the influence of PVT variations on the performance of the circuit without affecting the high frequency performance of the measured RF circuits

    Testability enhancement of a basic set of CMOS cells

    Get PDF
    Testing should be evaluated as the ability of the test patterns to cover realistic faults, and high quality IC products demand high quality testing. We use a test strategy based on physical design for testability (to discover both open and short faults, which are difficult or even impossible to detect). Consequentially, layout level design for testability (LLDFT) rules have been developed, which prevent the faults, or at least reduce the chance of their appearing. The main purpose of this work is to apply a practical set of LLDFT rules to the library cells designed by the Centre Nacional de MicroelectrĂČnica (CNM) and obtain a highly testable cell library. The main results of the application of the LLDFT rules (area overheads and performance degradation) are summarized and the results are significant since IC design is highly repetitive; a small effort to improve cell layout can bring about great improvement in design

    A programmable-load CMOS ring oscillator/inverter chain for propagation-delay measurements

    Get PDF
    A description is given of a test structure consisting of a combination of a ring oscillator and an inverter chain. The circuit can be used to carry out propagation delay measurements on two circuit types and under a number of load conditions. Full characterization only takes one test circuit. The elements of this structure are connected to a programmable load varying from a fan-in of 1 up to a fan-in of 15. In this way, the operating environment of the circuit can be simulated in hardware. The measurements can be carried out by means of a conventional automated digital measurement system providing AC and DC parametric measurement capabilities

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Global design of analog cells using statistical optimization techniques

    Get PDF
    We present a methodology for automated sizing of analog cells using statistical optimization in a simulation based approach. This methodology enables us to design complex analog cells from scratch within reasonable CPU time. Three different specification types are covered: strong constraints on the electrical performance of the cells, weak constraints on this performance, and design objectives. A mathematical cost function is proposed and a bunch of heuristics is given to increase accuracy and reduce CPU time to minimize the cost function. A technique is also presented to yield designs with reduced variability in the performance parameters, under random variations of the transistor technological parameters. Several CMOS analog cells with complexity levels up to 48 transistors are designed for illustration. Measurements from fabricated prototypes demonstrate the suitability of the proposed methodology

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    Dependable Digitally-Assisted Mixed-Signal IPs Based on Integrated Self-Test & Self-Calibration

    Get PDF
    Heterogeneous SoC devices, including sensors, analogue and mixed-signal front-end circuits and the availability of massive digital processing capability, are being increasingly used in safety-critical applications like in the automotive, medical, and the security arena. Already a significant amount of attention has been paid in literature with respect to the dependability of the digital parts in heterogeneous SoCs. This is in contrast to especially the sensors and front-end mixed-signal electronics; these are however particular sensitive to external influences over time and hence determining their dependability. This paper provides an integrated SoC/IP approach to enhance the dependability. It will give an example of a digitally-assisted mixed-signal front-end IP which is being evaluated under its mission profile of an automotive tyre pressure monitoring system. It will be shown how internal monitoring and digitally-controlled adaptation by using embedded processors can help in terms of improving the dependability of this mixed-signal part under harsh conditions for a long time
    • 

    corecore