4,116 research outputs found

    A Pattern Based Approach for Re-engineering Non-Ontological Resources into Ontologies

    Get PDF
    With the goal of speeding up the ontology development process, ontology engineers are starting to reuse as much as possible available ontologies and non-ontological resources such as classification schemes, thesauri, lexicons and folksonomies, that already have some degree of consensus. The reuse of such non-ontological resources necessarily involves their re-engineering into ontologies. Non-ontological resources are highly heterogeneous in their data model and contents: they encode different types of knowledge, and they can be modeled and implemented in different ways. In this paper we present (1) a typology for non-ontological resources, (2) a pattern based approach for re-engineering non-ontological resources into ontologies, and (3) a use case of the proposed approach

    Developing domain ontologies for course content

    Get PDF
    Ontologies have the potential to play an important role in instructional design and the development of course content. They can be used to represent knowledge about content, supporting instructors in creating content or learners in accessing content in a knowledge-guided way. While ontologies exist for many subject domains, their quality and suitability for the educational context might be unclear. For numerous subjects, ontologies do not exist. We present a method for domain experts rather than ontology engineers to develop ontologies for use in the delivery of courseware content. We will focus in particular on relationship types that allow us to model rich domains adequately

    The use of ontologies for effective knowledge modelling and information retrieval

    Get PDF
    © 2017 The dramatic increase in the use of knowledge discovery applications requires end users to write complex database search requests to retrieve information. Such users are not only expected to grasp the structural complexity of complex databases but also the semantic relationships between data stored in databases. In order to overcome such difficulties, researchers have been focusing on knowledge representation and interactive query generation through ontologies, with particular emphasis on improving the interface between data and search requests in order to bring the result sets closer to users research requirements. This paper discusses ontology-based information retrieval approaches and techniques by taking into consideration the aspects of ontology modelling, processing and the translation of ontological knowledge into database search requests. It also extensively compares the existing ontology-to-database transformation and mapping approaches in terms of loss of data and semantics, structural mapping and domain knowledge applicability. The research outcomes, recommendations and future challenges presented in this paper can bridge the gap between ontology and relational models to generate precise search requests using ontologies. Moreover, the comparison presented between various ontology-based information retrieval, database-to-ontology transformations and ontology-to-database mappings approaches provides a reference for enhancing the searching capabilities of massively loaded information management systems

    A review of the state of the art in Machine Learning on the Semantic Web: Technical Report CSTR-05-003

    Get PDF

    SODA: Generating SQL for Business Users

    Full text link
    The purpose of data warehouses is to enable business analysts to make better decisions. Over the years the technology has matured and data warehouses have become extremely successful. As a consequence, more and more data has been added to the data warehouses and their schemas have become increasingly complex. These systems still work great in order to generate pre-canned reports. However, with their current complexity, they tend to be a poor match for non tech-savvy business analysts who need answers to ad-hoc queries that were not anticipated. This paper describes the design, implementation, and experience of the SODA system (Search over DAta Warehouse). SODA bridges the gap between the business needs of analysts and the technical complexity of current data warehouses. SODA enables a Google-like search experience for data warehouses by taking keyword queries of business users and automatically generating executable SQL. The key idea is to use a graph pattern matching algorithm that uses the metadata model of the data warehouse. Our results with real data from a global player in the financial services industry show that SODA produces queries with high precision and recall, and makes it much easier for business users to interactively explore highly-complex data warehouses.Comment: VLDB201

    Development and Semantic Exploitation of a Relational Data Model for Service Delivery in South African Municipalities

    Get PDF
    Relational databases (RDB) are the main sources of structured data for government institutions and businesses. Since these databases are dependent on autonomous hardware and software they create problems of data integration and interoperability. Solutions have been proposed to convert RDB into ontology to enable their sharing, reuse and integration on the Semantic Web. However, the proposed methods and techniques remain highly technical and there is lack of research that focuses on the empirical application of these methods and techniques in information systems (IS) domains. This study develops and semantically exploits a relational data model of the South African Municipalities Information Systems for Service Delivery. A combination of qualitative and quantitative methods is used. The qualitative part of the research is carried out with a literature review and online search for relevant resources, whereas, the quantitative analysis was done with experiments. The research provides a case study of the empirical application of semantic web technologies for converting RDB into ontology in IS

    Mapping relational data model to OWL ontology: knowledge conceptualization in OWL

    Get PDF
    In this paper, we introduce the issues and solutions of using OWL ontology to model extra restriction on 'Properties' of 'Classes' that are not provided by OWL specifications and to represent associations amongst 'Properties' other than 'Classes'. Two specific types of knowledge that cannot be modeled directly using OWL DL elements are identified and presented. Firstly the data value range constraint for a "DatatypeProperty"; secondly the calculation knowledge representation. Our approach to such issues is to conceptualize the knowledge in OWL and map the conceptualization in an implementation. Examples for each type of the knowledge and their OWL code are provided in detail to demonstrate our approach

    Using ontologies to synchronize change in relational database systems

    Get PDF
    Ontology is a building block of the semantic Web. Ontology building requires a detailed domain analysis, which in turn requires financial resources, intensive domain knowledge and time. Domain models in industry are frequently stored as relational database schemas in relational databases. An ontology base underlying such schemas can represent concepts and relationships that are present in the domain of discourse. However, with ever increasing demand for wider access and domain coverage, public databases are not static and their schemas evolve over time. Ontologies generated according to these databases have to change to reflect the new situation. Once a database schema is changed, these changes in the schema should also be incorporated in any ontology generated from the database. It is not possible to generate a fresh version of the ontology using the new database schema because the ontology itself may have undergone changes that need to be preserved. To tackle this problem, this paper presents a generic framework that will help to generate and synchronize ontologies with existing data sources. In particular we address the translation between ontologies and database schemas, but our proposal is also sufficiently generic to be used to generate and maintain ontologies based on XML and object oriented databases

    Automatic Transformation of Relational Database Schema into OWL Ontologies

    Get PDF
    Ontology alignment, or ontology matching, is a technique to map different concepts between ontologies. For this purpose at least two ontologies are required. In certain scenarios, such as data integration, heterogeneous database integration and data model compatibility evaluation, a need to transform a relational database schema to an ontology can arise. To conduct a successful transformation it is necessary to identify the differences between relational database schema and ontology information representation methods, and then to define transformation rules. The most straight forward but time consuming way to carry out transformation is to do it manually. Often this is not an option due to the size of data to be transformed. For this reason there is a need for an automated solution.The automatic transformation of OWL ontology from relational database schema is presented in this paper; the data representation differences between relational database schema and OWL ontologies are described; the transformation rules are defined and the transformation tool’s prototype is developed to perform the described transformation

    Creation and extension of ontologies for describing communications in the context of organizations

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer ScienceThe use of ontologies is nowadays a sufficiently mature and solid field of work to be considered an efficient alternative in knowledge representation. With the crescent growth of the Semantic Web, it is expectable that this alternative tends to emerge even more in the near future. In the context of a collaboration established between FCT-UNL and the R&D department of a national software company, a new solution entitled ECC – Enterprise Communications Center was developed. This application provides a solution to manage the communications that enter, leave or are made within an organization, and includes intelligent classification of communications and conceptual search techniques in a communications repository. As specificity may be the key to obtain acceptable results with these processes, the use of ontologies becomes crucial to represent the existing knowledge about the specific domain of an organization. This work allowed us to guarantee a core set of ontologies that have the power of expressing the general context of the communications made in an organization, and of a methodology based upon a series of concrete steps that provides an effective capability of extending the ontologies to any business domain. By applying these steps, the minimization of the conceptualization and setup effort in new organizations and business domains is guaranteed. The adequacy of the core set of ontologies chosen and of the methodology specified is demonstrated in this thesis by its effective application to a real case-study, which allowed us to work with the different types of sources considered in the methodology and the activities that support its construction and evolution
    corecore