1,959 research outputs found

    MODELLING & SIMULATION HYBRID WARFARE Researches, Models and Tools for Hybrid Warfare and Population Simulation

    Get PDF
    The Hybrid Warfare phenomena, which is the subject of the current research, has been framed by the work of Professor Agostino Bruzzone (University of Genoa) and Professor Erdal Cayirci (University of Stavanger), that in June 2016 created in order to inquiry the subject a dedicated Exploratory Team, which was endorsed by NATO Modelling & Simulation Group (a panel of the NATO Science & Technology organization) and established with the participation as well of the author. The author brought his personal contribution within the ET43 by introducing meaningful insights coming from the lecture of \u201cFight by the minutes: Time and the Art of War (1994)\u201d, written by Lieutenant Colonel US Army (Rtd.) Robert Leonhard; in such work, Leonhard extensively developed the concept that \u201cTime\u201d, rather than geometry of the battlefield and/or firepower, is the critical factor to tackle in military operations and by extension in Hybrid Warfare. The critical reflection about the time - both in its quantitative and qualitative dimension - in a hybrid confrontation it is addressed and studied inside SIMCJOH, a software built around challenges that imposes literally to \u201cFight by the minutes\u201d, echoing the core concept expressed in the eponymous work. Hybrid Warfare \u2013 which, by definition and purpose, aims to keep the military commitment of both aggressor and defender at the lowest - can gain enormous profit by employing a wide variety of non-military tools, turning them into a weapon, as in the case of the phenomena of \u201cweaponization of mass migrations\u201d, as it is examined in the \u201cDies Irae\u201d simulation architecture. Currently, since migration it is a very sensitive and divisive issue among the public opinions of many European countries, cynically leveraging on a humanitarian emergency caused by an exogenous, inducted migration, could result in a high level of political and social destabilization, which indeed favours the concurrent actions carried on by other hybrid tools. Other kind of disruption however, are already available in the arsenal of Hybrid Warfare, such cyber threats, information campaigns lead by troll factories for the diffusion of fake/altered news, etc. From this perspective the author examines how the TREX (Threat network simulation for REactive eXperience) simulator is able to offer insights about a hybrid scenario characterized by an intense level of social disruption, brought by cyber-attacks and systemic faking of news. Furthermore, the rising discipline of \u201cStrategic Engineering\u201d, as envisaged by Professor Agostino Bruzzone, when matched with the operational requirements to fulfil in order to counter Hybrid Threats, it brings another innovative, as much as powerful tool, into the professional luggage of the military and the civilian employed in Defence and Homeland security sectors. Hybrid is not the New War. What is new is brought by globalization paired with the transition to the information age and rising geopolitical tensions, which have put new emphasis on hybrid hostilities that manifest themselves in a contemporary way. Hybrid Warfare is a deliberate choice of an aggressor. While militarily weak nations can resort to it in order to re-balance the odds, instead military strong nations appreciate its inherent effectiveness coupled with the denial of direct responsibility, thus circumventing the rules of the International Community (IC). In order to be successful, Hybrid Warfare should consist of a highly coordinated, sapient mix of diverse and dynamic combination of regular forces, irregular forces (even criminal elements), cyber disruption etc. all in order to achieve effects across the entire DIMEFIL/PMESII_PT spectrum. However, the owner of the strategy, i.e. the aggressor, by keeping the threshold of impunity as high as possible and decreasing the willingness of the defender, can maintain his Hybrid Warfare at a diplomatically feasible level; so the model of the capacity, willingness and threshold, as proposed by Cayirci, Bruzzone and Gunneriusson (2016), remains critical to comprehend Hybrid Warfare. Its dynamicity is able to capture the evanescent, blurring line between Hybrid Warfare and Conventional Warfare. In such contest time is the critical factor: this because it is hard to foreseen for the aggressor how long he can keep up with such strategy without risking either the retaliation from the International Community or the depletion of resources across its own DIMEFIL/PMESII_PT spectrum. Similar discourse affects the defender: if he isn\u2019t able to cope with Hybrid Threats (i.e. taking no action), time works against him; if he is, he can start to develop counter narrative and address physical countermeasures. However, this can lead, in the medium long period, to an unforeseen (both for the attacker and the defender) escalation into a large, conventional, armed conflict. The performance of operations that required more than kinetic effects drove the development of DIMEFIL/PMESII_PT models and in turn this drive the development of Human Social Culture Behavior Modelling (HCSB), which should stand at the core of the Hybrid Warfare modelling and simulation efforts. Multi Layers models are fundamental to evaluate Strategies and Support Decisions: currently there are favourable conditions to implement models of Hybrid Warfare, such as Dies Irae, SIMCJOH and TREX, in order to further develop tools and war-games for studying new tactics, execute collective training and to support decisions making and analysis planning. The proposed approach is based on the idea to create a mosaic made by HLA interoperable simulators able to be combined as tiles to cover an extensive part of the Hybrid Warfare, giving the users an interactive and intuitive environment based on the \u201cModelling interoperable Simulation and Serious Game\u201d (MS2G) approach. From this point of view, the impressive capabilities achieved by IA-CGF in human behavior modeling to support population simulation as well as their native HLA structure, suggests to adopt them as core engine in this application field. However, it necessary to highlight that, when modelling DIMEFIL/PMESII_PT domains, the researcher has to be aware of the bias introduced by the fact that especially Political and Social \u201cscience\u201d are accompanied and built around value judgement. From this perspective, the models proposed by Cayirci, Bruzzone, Guinnarson (2016) and by Balaban & Mileniczek (2018) are indeed a courageous tentative to import, into the domain of particularly poorly understood phenomena (social, politics, and to a lesser degree economics - Hartley, 2016), the mathematical and statistical instruments and the methodologies employed by the pure, hard sciences. Nevertheless, just using the instruments and the methodology of the hard sciences it is not enough to obtain the objectivity, and is such aspect the representations of Hybrid Warfare mechanics could meet their limit: this is posed by the fact that they use, as input for the equations that represents Hybrid Warfare, not physical data observed during a scientific experiment, but rather observation of the reality that assumes implicitly and explicitly a value judgment, which could lead to a biased output. Such value judgement it is subjective, and not objective like the mathematical and physical sciences; when this is not well understood and managed by the academic and the researcher, it can introduce distortions - which are unacceptable for the purpose of the Science - which could be used as well to enforce a narrative mainstream that contains a so called \u201ctruth\u201d, which lies inside the boundary of politics rather than Science. Those observations around subjectivity of social sciences vs objectivity of pure sciences, being nothing new, suggest however the need to examine the problem under a new perspective, less philosophical and more leaned toward the practical application. The suggestion that the author want make here is that the Verification and Validation process, in particular the methodology used by Professor Bruzzone in doing V&V for SIMCJOH (2016) and the one described in the Modelling & Simulation User Risk Methodology (MURM) developed by Pandolfini, Youngblood et all (2018), could be applied to evaluate if there is a bias and the extent of the it, or at least making clear the value judgment adopted in developing the DIMEFIL/PMESII_PT models. Such V&V research is however outside the scope of the present work, even though it is an offspring of it, and for such reason the author would like to make further inquiries on this particular subject in the future. Then, the theoretical discourse around Hybrid Warfare has been completed addressing the need to establish a new discipline, Strategic Engineering, very much necessary because of the current a political and economic environment which allocates diminishing resources to Defense and Homeland Security (at least in Europe). However, Strategic Engineering can successfully address its challenges when coupled with the understanding and the management of the fourth dimension of military and hybrid operations, Time. For the reasons above, and as elaborated by Leonhard and extensively discussed in the present work, addressing the concern posed by Time dimension is necessary for the success of any military or Hybrid confrontation. The SIMCJOH project, examined under the above perspective, proved that the simulator has the ability to address the fourth dimension of military and non-military confrontation. In operations, Time is the most critical factor during execution, and this was successfully transferred inside the simulator; as such, SIMCJOH can be viewed as a training tool and as well a dynamic generator of events for the MEL/MIL execution during any exercise. In conclusion, SIMCJOH Project successfully faces new challenging aspects, allowed to study and develop new simulation models in order to support decision makers, Commanders and their Staff. Finally, the question posed by Leonhard in terms of recognition of the importance of time management of military operations - nowadays Hybrid Conflict - has not been answered yet; however, the author believes that Modelling and Simulation tools and techniques can represent the safe \u201ctank\u201d where innovative and advanced scientific solutions can be tested, exploiting the advantage of doing it in a synthetic environment

    Knowledge Management Approaches for predicting Biomarker and Assessing its Impact on Clinical Trials

    Get PDF
    The recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for the drug discovery companies to invest into novel strategies for stratified biomarker discovery. Catching with this trend, trials with stratified biomarker in drug development have quadrupled in the last decade but represent a small part of all Interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics. To overcome the challenge, varied knowledge management and system biology approaches are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. The analysis clearly shows that cancer is the major focus for trials with stratified biomarker. But targeted therapies in cancer require more accurate stratification of patient population. This can be augmented by a fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate stratification biomarker. miRNA plays an important role in tumorgenesis in regulating expression of oncogenes and tumor suppressors; thus affecting cell proliferation, differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in different cancer. However, the relationship between response of cancer patients towards targeted therapy and resulting modifications of the miRNA transcriptome in pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have created an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully automated version of the algorithm has the potential to be used as clinical decision support tool. Moreover this research will also provide a comprehensive and valuable knowledge map demonstrating functional bimolecular interactions in colorectal cancer to scientific community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has- miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC which were not reported previously. Finally a prospective plan on future scenario of biomarker research in cancer drug development has been drawn focusing to reduce the risk of most expensive phase III drug failures

    A Scalable Design Framework for Variability Management in Large-Scale Software Product Lines

    Get PDF
    Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools

    Managing knowledge for capability engineering

    Get PDF
    The enterprises that deliver capability are trying to evolve into through-life businesses by shifting away from the traditional pattern of designing and manufacturing successive generations of products, towards a new paradigm centred on support, sustainability and the incremental enhancements of existing capabilities from technology insertions and changes to process. The provision of seamless through-life customer solutions depends heavily on management of information and knowledge between, and within the different parts of the supply chain enterprise. This research characterised and described Capability Engineering (CE) as applied in the defence enterprise and identified to BAE Systems important considerations for managing knowledge within that context. The terms Capability Engineering and Through Life Capability Management (TLCM), used synonymously in this thesis, denote a complex evolving domain that requires new approaches to better understand the different viewpoints, models and practices. The findings and novelty of this research is demonstrated through the following achievements: Defined the problem space that Requirements Engineers can use in through-life management projects. Made a contribution to the development of models for Systems Architects to enable them to incorporate ‘soft’ systems within their consideration. Independently developed a TLCM activity model against which BAE Systems validated the BAE Systems TLCM activity model, which is now used by UK Ministry of Defence (MoD). Developed, and published within INCOSE1, the INCOSE Capability Engineering ontology. Through the novel analysis of a directly applicable case study, highlighted to Functional Delivery Managers the significance of avoiding the decoupling of information and knowledge in the context of TLCM. Through experimentation and knowledge gained within this research, identified inadequacies in the TechniCall (rapid access to experts) service which led to the generation of requirements for an improved service which is now being implemented by BAE Systems. The results showed that managing knowledge is distinct when compared to information management. Over-reliance on information management in the absence of tacit knowledge can lead to a loss in the value of the information, which can result in unintended consequences. Capability is realised through a combination of component systems and Capability Engineering is equivalent to a holistic perspective of Systems Engineering. A sector-independent Capability Engineering ontology is developed to enable semantic interoperability between different domains i.e. defence, rail and information technology. This helped to better understand the dependencies of contributing component systems within defence, and supported collaboration across different domains. Although the evaluation of the ontology through expert review has been accomplished; the ontology, KM analysis framework and soft systems transitioning approach developed still need to undergo independent verification and validation. This requires application to other case studies to check and exploit their suitability. This Engineering Doctorate research has been disseminated through a number of peer reviewed publications

    Special Isssue: Engaging the Data Moment

    Get PDF

    Share.TEC Final Project Report

    Get PDF
    This report provides an overview of Share.TEC, a three-year project co-funded by the EC that supports access to, exchange and re-use of digital resources and practitioner experiences within Teacher Education at European level. The document comprises a number of sections that can either be read consecutively, to gain the full picture of the project and its outcomes, or in combinations so as to grasp particular aspects, how these were approached and what results were achieved. Section 2 describes the project\u27s overall objectives in terms of both its technological ambitions and its wider mission as part of the overall educational landscape. Section 3 gives brief profiles of the partners who made up the Share.TEC consortium. In Section 4 the results and achievements of the project are reported. This includes a description of the portal and its features; the system architecture, tools and services; the models underpinning the Share.TEC system; and the approach taken to its multilingual dimension. Section 5 addresses the question of Share.TEC\u27s target users and their needs. It describes the strategies and means employed for incorporating the user perspective, and for ensuring that the project direction was in line with users\u27 concerns so that the resulting portal responds suitably to the actual requirements of the people it\u27s designed for. Section 6 examines the critical aspect of underlying content. In keeping with the Share.TEC mission, the focus is largely on aggregated metadata records that describe digital resources for TE and which are expressed in terms defined by the project for TE purposes. Section 7 reports the activities undertaken in the project and thus narrates the processes that unfolded through the project lifetime as the consortium pursued its objectives and generated its outcomes. Section 8 describes the effort to establish the Share.TEC portal within its natural ecosystem. It looks at the global strategy for maximising impact both at regional/national level and internationally, and analyses the conditions and prospects for continuity and growth. Readers interested in the technical/technological dimension of Share.TEC (the system, portal, models, metadata, etc.) are likely to find Sections 4, 5 and 6 to be the ones closest to their concerns. Conversely, those whose interests lie elsewhere could simply consult Section 4.1 to get an idea of the portal from the user\u27s viewpoint and go to Sections 2, 3, 7 and 8 for a vision of the project and how Share.TEC is positioned in the panorama of digital resources and Teacher Education
    corecore