95 research outputs found

    Low-cost Industrial controller based on the Raspberry Pi platform

    Get PDF
    Mestrado de dupla diplomação com o Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJThe low-cost automation field exhibits the need of innovation both in terms of hardware and software. There is a lack of devices that allow the development of control logic that is free from restrictions of domain-specific communication platforms and at the same time able to provide the capabilities aligned to the Industry 4.0 requirements. The objective of this work is to develop an inexpensive, small Industrial Controller that supports the execution of programs in different industrial programming languages. So, it is intended to develop, manufacture and control a low-cost but powerful Industrial Controller based on the use of the single-board computer Raspberry Pi. The study described in this document was carried out on the creation of a hardware platform that is capable of integrating with software frameworks compatible with standards updated and widely used in the industrial automation field. IEC 61131-3 is employed displaying the ease of use and implementation alongside multiple well established programming languages for automation through the OpenPLC platform while IEC 61449 is employed through the 4DIAC framework that has a clear and objective environment capable of providing the appropriate tools for implementation of a distributed control. It is employed the single-board computer Raspberry Pi, a robust device with adequate processing power and communication capability for the elaboration of a platform in the low-cost automation scope. The elaboration of the Industrial Shields, responsible for providing the controller I/O interface took into consideration maintenance concerns of controller integrity through the application of galvanic isolation in the automaton input and output sections. The proposed platform was successfully tested in an automation system prototype comprising Fischertechnik’s Punching Machine being possible to develop the control logic using IEC 61131-3 and IEC 61499.O campo de automação de baixo custo demonstra a necessidade de inovação em termos de hardware e software. Há uma falta de dispositivos que permitem o desenvolvimento de lógica de controle livre de restrições de plataformas de comunicação específicas de domínio e, ao mesmo tempo, capazes de fornecer os recursos alinhados aos requisitos da Indústria 4.0. O objetivo deste trabalho é desenvolver um pequeno Controlador Industrial de baixo custo que suporte a execução de programas em diferentes linguagens de programação industrial. Assim, pretende-se desenvolver, fabricar e controlar um Controlador Industrial de baixo custo, mas poderoso, baseado no uso do computador de placa única Raspberry Pi. O estudo descrito neste documento foi realizado na criação de uma plataforma de hardware que é capaz de se integrar com frameworks de software compatíveis com padrões atualizados e amplamente utilizados na área de automação industrial. A IEC 61131-3 é empregada exibindo a facilidade de uso e implementação juntamente com várias linguagens de programação bem estabelecidas para automação através da plataforma OpenPLC enquanto a IEC 61449 é empregada através da estrutura 4DIAC que possui um ambiente claro e objetivo capaz de fornecer as ferramentas apropriadas para implementação de um controle distribuído. É empregado o computador de placa única Raspberry Pi, um dispositivo robusto com capacidade de processamento e capacidade de comunicação adequados para a elaboração de uma plataforma no escopo de automação de baixo custo. A elaboração dos industrial shields, responsáveis por fornecer a interface de I/O do controlador levou em consideração as preocupações de manutenção da integridade do controlador através da aplicação de isolação galvânica nas seções de entrada e saída do autômato. A plataforma proposta foi testada com sucesso em um protótipo de sistema de automação compreendendo a Punching Machine da Fischertechnik sendo possível desenvolver a lógica de controle usando IEC 61131-3 e IEC 61499

    A Semantic Interoperability Model Based on the IEEE 1451 Family of Standards Applied to the Industry 4.0

    Get PDF
    The Internet of Things (IoT) has been growing recently. It is a concept for connecting billions of smart devices through the Internet in different scenarios. One area being developed inside the IoT in industrial automation, which covers Machine-to-Machine (M2M) and industrial communications with an automatic process, emerging the Industrial Internet of Things (IIoT) concept. Inside the IIoT is developing the concept of Industry 4.0 (I4.0). That represents the fourth industrial revolution and addresses the use of Internet technologies to improve the production efficiency of intelligent services in smart factories. I4.0 is composed of a combination of objects from the physical world and the digital world that offers dedicated functionality and flexibility inside and outside of an I4.0 network. The I4.0 is composed mainly of Cyber-Physical Systems (CPS). The CPS is the integration of the physical world and its digital world, i.e., the Digital Twin (DT). It is responsible for realising the intelligent cross-link application, which operates in a self-organised and decentralised manner, used by smart factories for value creation. An area where the CPS can be implemented in manufacturing production is developing the Cyber-Physical Production System (CPPS) concept. CPPS is the implementation of Industry 4.0 and CPS in manufacturing and production, crossing all levels of production between the autonomous and cooperative elements and sub-systems. It is responsible for connecting the virtual space with the physical world, allowing the smart factories to be more intelligent, resulting in better and smart production conditions, increasing productivity, production efficiency, and product quality. The big issue is connecting smart devices with different standards and protocols. About 40% of the benefits of the IoT cannot be achieved without interoperability. This thesis is focused on promoting the interoperability of smart devices (sensors and actuators) inside the IIoT under the I4.0 context. The IEEE 1451 is a family of standards developed to manage transducers. This standard reaches the syntactic level of interoperability inside Industry 4.0. However, Industry 4.0 requires a semantic level of communication not to exchange data ambiguously. A new semantic layer is proposed in this thesis allowing the IEEE 1451 standard to be a complete framework for communication inside the Industry 4.0 to provide an interoperable network interface with users and applications to collect and share the data from the industry field.A Internet das Coisas tem vindo a crescer recentemente. É um conceito que permite conectar bilhões de dispositivos inteligentes através da Internet em diferentes cenários. Uma área que está sendo desenvolvida dentro da Internet das Coisas é a automação industrial, que abrange a comunicação máquina com máquina no processo industrial de forma automática. Essa interligação, representa o conceito da Internet das Coisas Industrial. Dentro da Internet das Coisas Industrial está a desenvolver o conceito de Indústria 4.0 (I4.0). Isso representa a quarta revolução industrial que aborda o uso de tecnologias utilizadas na Internet para melhorar a eficiência da produção de serviços em fábricas inteligentes. A Indústria 4.0 é composta por uma combinação de objetos do mundo físico e do mundo da digital que oferece funcionalidade dedicada e flexibilidade dentro e fora de uma rede da Indústria 4.0. O I4.0 é composto principalmente por Sistemas Ciberfísicos. Os Sistemas Ciberfísicos permitem a integração do mundo físico com seu representante no mundo digital, por meio do Gémeo Digital. Sistemas Ciberfísicos são responsáveis por realizar a aplicação inteligente da ligação cruzada, que opera de forma auto-organizada e descentralizada, utilizada por fábricas inteligentes para criação de valor. Uma área em que o Sistema Ciberfísicos pode ser implementado na produção manufatureira, isso representa o desenvolvimento do conceito Sistemas de Produção Ciberfísicos. Esse sistema é a implementação da Indústria 4.0 e Sistema Ciberfísicos na fabricação e produção. A cruzar todos os níveis desde a produção entre os elementos e subsistemas autónomos e cooperativos. Ele é responsável por conectar o espaço virtual com o mundo físico, permitindo que as fábricas inteligentes sejam mais inteligentes, resultando em condições de produção melhores e inteligentes, aumentando a produtividade, a eficiência da produção e a qualidade do produto. A grande questão é como conectar dispositivos inteligentes com diferentes normas e protocolos. Cerca de 40% dos benefícios da Internet das Coisas não podem ser alcançados sem interoperabilidade. Esta tese está focada em promover a interoperabilidade de dispositivos inteligentes (sensores e atuadores) dentro da Internet das Coisas Industrial no contexto da Indústria 4.0. O IEEE 1451 é uma família de normas desenvolvidos para gerenciar transdutores. Esta norma alcança o nível sintático de interoperabilidade dentro de uma indústria 4.0. No entanto, a Indústria 4.0 requer um nível semântico de comunicação para não haver a trocar dados de forma ambígua. Uma nova camada semântica é proposta nesta tese permitindo que a família de normas IEEE 1451 seja um framework completo para comunicação dentro da Indústria 4.0. Permitindo fornecer uma interface de rede interoperável com utilizadores e aplicações para recolher e compartilhar os dados dentro de um ambiente industrial.This thesis was developed at the Measurement and Instrumentation Laboratory (IML) in the University of Beira Interior and supported by the portuguese project INDTECH 4.0 – Novas tecnologias para fabricação, que tem como objetivo geral a conceção e desenvolvimento de tecnologias inovadoras no contexto da Indústria 4.0/Factories of the Future (FoF), under the number POCI-01-0247-FEDER-026653

    Internet of Things Software Modules Marketplace

    Get PDF
    The project developed is a centralised repository of software packages to be used in cyber-physical systems. It is composed by a central database, an http api, an ftp client to serve files and a web application to manage the repository. The system also communicates via OPCUA protocol with the embed-system for real time monitoring.The advent of the Cyber-Physical Systems (CPS), a physical system representation through a vir-tual model, usually used to control a system or a process comes from the growing democratizationof the computational power. Nowadays, virtually anything can be equipped with some kind ofembedded processor to automate tasks, generate or consume some kind of data. In addition, thecontinuous development and improvement of the communication networks has helped leveragethe concept of the Internet of Things (IoT) in which things are now, themselves, connected to theInternet, exchanging data with each other and with people.In the industrial sector, CPS, also called Cyber-Physical Production Systems (CPPS) and theIoT are the main technological advances that lead to the industry fourth revolution, common des-ignated as Industry 4.0 in which the factory floor is no longer a centralized model where all thecomputation is done centrally but is now a decentralized model where industrial equipment haveembedded devices to control, automate tasks and react in a dynamic and intelligent manner to thesensed physical environment.Thereby, one of the keywords around the CPPSs is software. Software is no longer centralizedand is now distributed through several devices that comprises the system. This new approachcomes with significant changes and one of them is the reuse and distribution of the software. Itis not viable to manual deploy and install software in hundreds or thousands of devices and nothaving a way of reusing the existing software. If, on the one hand, the desire is to develop a moreintelligent process control system, on the other, flexibility, adaptability and simplicity are alsoconvenient capabilities or else intelligent manufacturing process control systems are built upon alot of resources debt. Hence, the solution is to build standards, tools and frameworks that allowthe reuse of software and its rapid deployment in the distributed devices.One option, in the Industry 4.0 field, to cope with the software reuse issue in this kind of sys-tems is the encapsulation of software in functional blocks, the Function Blocks (FBs) and their usein the function block programming paradigm, described in IEC 61499 standard. The functionalityis abstracted away in the FBs and can be reused by just deploying the them to the devices. Thisway, it is easier to manage a network by dragging and dropping these blocks, building complexapplications centrally and deploy everything to the distributed embedded devices. However, theimplementation of this standard to address the aforementioned problem brings, itself, other neces-sities such as managing the FBs, monitoring them and their previous download by the embeddeddevices.This dissertation main goal is the development of a marketplace to manage and monitor of FBs in a IEC 61499 network envisioning the filling of the previous mentioned gaps in this kindof networks. The marketplace, integrated in a IEC 61499 global solution will not only enable thedistribution of FBs among the embedded devices in a IEC 61499 compliant CPPS but also manageFBs versions, functioning as a central repository of software components, having also monitoringand statistical features, allowing the detection of flaws or malfunctions and collect statistical datai iiabout FBs usage

    Digital Twins for an Industrial Internet of Things Platform

    Get PDF
    Com o avanço da Indústria 4.0 e do surgimento de novas tecnologias de informação e comunicação tais como o IIoT (Industrial Internet of Things), o sector industrial tem procurado cada vez mais, evoluir as suas linhas de produção de modo a atingir a maior eficiência de produção possível. Aliado ao conceito IIoT, o termo Digital Twin e CPS (Cyber Physical System) começam a ganhar elevada relevância em vários sectores, nomeadamente no sector industrial. Apesar de serem conceitos que se podem confundir, o conceito de DT e CPS são aplicados em diferentes domínios. O conceito de CPS relaciona-se com a conexão de duas direções que é possível estabelecer entre o meio físico e o meio digital. Ele utiliza a rede IoT para capturar a informação do meio físico através de sensores e controladores e com esta informação, é possível no meio digital tornar a réplica mais inteligente a fim de conseguir reproduzir o comportamento da entidade física. O conceito de DT é um pouco menos abstrato, comparado com o conceito de CPS, e é o DT que implementa o CPS. O DT utiliza as funcionalidades do CPS para realizar modelos de simulação das entidades físicas de forma a conseguir espelhar a geometria e o comportamento da mesma no meio digital. Com estes modelos digitais é possível realizar uma monitorização e controlo em tempo real das entidades físicas. De forma a aplicar estes conceitos, esta dissertação tem como principal objetivo a implementação de um DT capaz de replicar o comportamento de uma determinada entidade física no meio digital. Dessa forma, através da aplicação web Jurassic Park como plataforma IoT, a dissertação pretende adicionar um conjunto de novas funcionalidades de controlo e monitorização à sua interface-gráfica, de modo a que o utilizador consiga não só observar em tempo real a variação de valores de variáveis previamente subscritas mas também controlar alguns eventos que também foram selecionados pelo utilizador previamente

    Selection of a new hardware and software platform for railway interlocking

    Get PDF
    The interlocking system is one of the main actors for safe railway transportation. In most cases, the whole system is supplied by a single vendor. The recent regulations from the European Union direct for an “open” architecture to invite new game changers and reduce life-cycle costs. The objective of the thesis is to propose an alternative platform that could replace a legacy interlocking system. In the thesis, various commercial off-the-shelf hardware and software products are studied which could be assembled to compose an alternative interlocking platform. The platform must be open enough to adapt to any changes in the constituent elements and abide by the proposed baselines of new standardization initiatives, such as ERTMS, EULYNX, and RCA. In this thesis, a comparative study is performed between these products based on hardware capacity, architecture, communication protocols, programming tools, security, railway certifications, life-cycle issues, etc

    A review of architectures and concepts for intelligence in future electric energy system

    Get PDF
    Renewable energy sources are one key enabler to decrease greenhouse gas emissions and to cope with the anthropogenic climate change. Their intermittent behavior and limited storage capabilities present a new challenge to power system operators to maintain power quality and reliability. Additional technical complexity arises from the large number of small distributed generation units and their allocation within the power system. Market liberalization and changing regulatory framework lead to additional organizational complexity. As a result, the design and operation of the future electric energy system have to be redefined. Sophisticated information and communication architectures, automation concepts, and control approaches are necessary in order to manage the higher complexity of so-called smart grids. This paper provides an overview of the state of the art and recent developments enabling higher intelligence in future smart grids. The integration of renewable sources and storage systems into the power grids is analyzed. Energy management and demand response methods and important automation paradigms and domain standards are also reviewed.info:eu-repo/semantics/publishedVersio

    Metodologías para el diseño de sistemas de control distribuido bajo el estándar IEC 61499 aplicados al control de procesos

    Get PDF
    167 p.Es evidente que en los próximos años gran parte de las tecnologías recogidas bajo el marco de la denominada Industria 4.0 tendrá un profundo impacto en todas las empresas y, entre ellas, las relacionadas con la explotación y producción de petróleo y gas. Sin embargo, la apresurada adopción de tecnologías de la información sin un conocimiento adecuado de las mismas y su aplicación a los diferentes aspectos de los sistemas de control de planta, sistema de planificación de recursos empresariales (Enterprise Resource Planning ¿ ERP) y sistemas orientados a la ejecución de la fabricación (Manufacturing Execution Systems ¿ MES) puede derivar en que las compañías de petróleo y gas automaticen sus sistemas industriales con un injustificado alto coste, de manera potencialmente peligrosa y propensa a errores. La automatización de bajo coste promueve arquitecturas de referencia rentables y nuevos enfoques de desarrollo para aumentar la flexibilidad y la eficiencia de las opera-ciones de producción en una planta industrial. Esto ha llevado a la adopción por parte este tipo de empresas de estándares de redes industriales para las comunicaciones a todos los niveles. En este sentido, OPC UA, además de permitir adherirse a las empresas a la iniciativa de la Industria 4.0, proporciona acceso local y remoto a la información de planta, facilitando un mecanismo reconocido de integración tanto horizontal como vertical de manera correcta, segura y eficiente. El objetivo principal de esta tesis doctoral es presentar una arquitectura abierta para la integración vertical basada en sistemas ciber-físicos de producción, configurados bajo la norma IEC 61499 y usando OPC UA, apta para su utilización en la fabricación flexible en la industria de petróleo y ga

    Automation Architecture based on Cyber Physical Systems for Flexible Manufacturing within Oil&Gas Industry

    Full text link
    [ES] Es evidente que en los próximos años gran parte de las tecnologías recogidas bajo el marco de la denominada Industria 4.0 tendrá un profundo impacto en todas las empresas y entre ellas, en las relacionadas con la explotación y producción de petróleo y gas. La automatización de bajo coste promueve arquitecturas de referencia rentables y nuevos enfoques de desarrollo para aumentar la flexibilidad y la eficiencia de las operaciones de producción en una planta industrial. En este sentido, OPC UA, proporciona acceso local y remoto a la información de planta, facilitando un mecanismo reconocido de integración tanto horizontal como vertical de manera correcta, segura y eficiente. El objetivo principal de este artículo es presentar una arquitectura abierta para la integración vertical basada en sistemas ciber-físicos de producción, configurados bajo la norma IEC 61499 y usando OPC UA, apta para su utilización en la fabricación flexible en la industria de petróleo ygas.[EN] It is clear that in the next few years most of the technologies involved in the so-called Industry 4.0 will have a deep impact on manufacturing companies, including those related to Oil & Gas exploration and production. Low cost automation promotes reference architectures and development approaches aiming at increasing the flexibility and efficiency of production operations in industrial plants. In this sense, OPC UA, in addition to allowing companies to join the Industry 4.0 initiative, provides local and remote access to plant information, enabling a recognized mechanism for both, horizontal and vertical integration in a reliable, safe and efficient way. The contribution of this article is an open architecture for vertical integration based on cyber-physical production systems, configured under IEC 61499 and using OPC UA, suitable to achieve flexible manufacturing within Oil & Gas industry.Este trabajo ha sido financiado por el MINECO/FEDER, UE del Gobierno de España bajo el proyecto DPI2015-68602-R y por el Gobierno Vasco/EJ bajo el reconocimiento de grupo de investigación IT914-16. Así mismo como al Gobierno Ecuatoriano a través de la Beca SENESCYT “Convocatoria abierta 2013”.García, MV.; Irisarri, E.; Pérez, F.; Estévez, E.; Marcos, M. (2018). Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas. Revista Iberoamericana de Automática e Informática industrial. 15(2):156-166. https://doi.org/10.4995/riai.2017.8823OJS156166152DIAC, 2017. IEC 61499 Implementation for Distributed. Available at: https://eclipse.org/4diac/Claassen, A., Rohjans, S. & Lehnhoff Member, S., 2011. Application of the OPC UA for the Smart Grid. In 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies. IEEE, pp. 1-8. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6162627.Garcia, M. V. et al., 2014. Building industrial CPS with the IEC 61499 standard on low-cost hardware platforms. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp.1-4. https://doi.org/10.1109/ETFA.2014.7005272Garcia, M. V. et al., 2015. Developing CPPS within IEC-61499 based on low cost devices. IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2015-July, pp.1-4.GmbH, 4DIAC Consortium. PROFACTOR, 2010. Framework for Distributed Industrial Automation and Control (4DIAC). Available at: http://www.fordiac.org.Hazarika, P. et al., 2015. Mobile cloud integration for industrial data interchange. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, pp.1118-1122. https://doi.org/10.1109/ICACCI.2015.7275760Hussain, T. & Frey, G., 2004. Developing IEC 61499 compliant distributed systems with network enabled controllers. In IEEE Conference on Robotics, Automation and Mechatronics, 2004. IEEE, pp. 507-512. Available at: http://ieeexplore.ieee.org/document/1438972/.International Electrotechnical Commission, 2014. International Electrotechnical Commission Std. (2005) IEC 61499: Function blocks, Part 1-4. Available at: http://www.iec.ch.Jain, S., Yuan, C. & Ferreira, P., 2002. EMBench: A Rapid Prototyping Environment for Numerical Control Systems. In Dynamic Systems and Control. ASME, pp. 7-13. Available at: http://proceedings.asmedigita lcollection.asme.org/proceeding.aspx?articleid=1580998.Kim, J. et al., 2014. M2M service platforms: Survey, issues, and enabling technologies. IEEE Communications Surveys and Tutorials, 16(1), pp.61-76. https://doi.org/10.1109/SURV.2013.100713.00203van der Linden, D. et al., 2011. An OPC UA interface for an evolvable ISA88 control module. In ETFA2011. IEEE, pp. 1-9. Available at: http://ieeexplore.ieee.org/document/6058978/. https://doi.org/10.1109/ETFA.2011.6058978Olsen, S. et al., 2005. Contingencies-based reconfiguration of distributed factory automation. Robotics and Computer-Integrated Manufacturing, 21(4-5), pp.379-390. https://doi.org/10.1016/j.rcim.2004.11.011Perez, F. et al., 2015. A CPPS Architecture approach for Industry 4.0. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, pp. 1-4. Available at: http://ieeexplore.ieee.org/document/7301606/.Querol, E. et al., 2016. Evaluation of closed loop control applications using different event management strategies under IEC 61499. In 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). IEEE, pp. 1-8. Available at: http://ieeexplore.ieee.org/document/7605263/.Rentschler, M., Trsek, H. & Durkop, L., 2016. OPC UA extension for IP auto-configuration in cyber-physical systems. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, pp. 26-31. Available at: http://ieeexplore.ieee.org/document/7819128/.Sande, O., Fojcik, M. & Cupek, R., 2010. OPC UA Based Solutions for Integrated Operations. Communications in Computer and Information Science, 79, pp.76-83. https://doi.org/10.1007/978-3-642-13861-4_8Schwab, C., Tangermann, M. & Ferrarini, L., 2005. Web based methodology for engineering and maintenance of distributed control systems: the TORERO approach. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 32-37. Available at: http://ieeexplore.ieee.org/document/1560348/. https://doi.org/10.1109/INDIN.2005.1560348Stambolov, G. & Batchkova, I., 2011. Reconfiguration processes in manufacturing systems on the base of IEC 61499 standard. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems. IEEE, pp. 161-166. Available at: http://ieeexplore.ieee.org/document/6072731/. https://doi.org/10.1109/IDAACS.2011.6072731Stojmenovic, I., 2014. Machine-to-Machine Communications with In-network Data Aggregation, Processing and Actuation for Large Scale Cyber-Physical Systems. IEEE Internet of Things Journal, PP(99), pp.1-1. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6766661.Strasser, T. et al., 2011. Design and Execution Issues in IEC 61499 Distributed Automation and Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), pp.41-51. Available at: http://ieeexplore.ieee.org/document/5571034/. https://doi.org/10.1109/TSMCC.2010.2067210Strasser, T., Auinger, F. & Zoitl, A., 2004. Development, implementation and use of an IEC 61499 function block library for embedded closed loop control. In 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN '04. 2004. IEEE, pp. 594-599. Available at: http://ieeexplore.ieee.org/document/1417415/. https://doi.org/10.1109/INDIN.2004.1417415Thramboulidis, K. & Tranoris, C., 2001. An architecture for the development of function block oriented engineering support systems. In Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515). IEEE, pp. 536-542. Available at: http://ieeexplore.ieee.org/document/ 1013258/https://doi.org/10.1109/CIRA.2001.1013258Vicaire, P.A. et al., 2012. Bundle : A Group-Based Programming Abstraction for Cyber-Physical Systems. , 8(2), pp.379-392.Vyatkin, V., Cheng Pang & Tripakis, S., 2015. Towards cyber-physical agnosticism by enhancing IEC 61499 with PTIDES model of computations. In IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 001970-001975. Available at: http://ieeexplore.ieee.org/document/7392389/.Wang, L. et al., 2001. Realizing Holonic Control with Function Blocks. Integr. Comput.-Aided Eng., 8(1), pp.81-93. Available at: http://dl.acm.org/citation.cfm?id=1275723.1275730.Wang, L., Keshavarzmanesh, S. & Feng, H.Y., 2008. Design of adaptive function blocks for dynamic assembly planning and control. Journal of Manufacturing Systems, 27(1), pp.45-51. Available at:https://doi.org/10.1016/j.jmsy.2008.06.003Wang, L., Song, Y. & Gao, Q., 2009. Designing function blocks for distributed process planning and adaptive control. Engineering Applications of Artificial Intelligence, 22(7), pp.1127-1138. Available at:https://doi.org/10.1016/j.engappai.2008.11.008Yuan, C. & Ferreira, P., 2004. An Integrated Environment for the Design and Control of Deadlock-Free Flexible Manufacturing Cells. In Manufacturing Engineering and Materials Handling Engineering. ASME, pp. 471-481. Available at: http://proceedings. asmedigitalcollection.asme.org/ proceeding.aspx?articleid=1652663.Zawawi, A. El & El-Sayed, A., 2012. Integration of DCS and ESD through an OPC application for upstream Oil and Gas. IEEE Power and Energy Society General Meeting, pp.1-5.Zoitl, A. et al., 2005. Executing real-time constrained control applications modelled in IEC 61499 with respect to dynamic reconfiguration. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 62-67. Available at: http://ieeexplore.ieee.org/document/1560353/. https://doi.org/10.1109/INDIN.2005.156035

    Integración de comunicaciones a nivel de planta empleando sistemas ciber-físicos de producción de bajo coste

    Get PDF
    [Resumen] Los sistemas de automatización industrial actuales tienen que hacer frente a los desafíos que surgen al tratar de solventar las necesidades generadas por un mercado altamente competitivo. Estos desafíos conducen a la utilización de una nueva generación de sistemas de automatización basado en los denominados Sistemas Ciber-físicos de Producción (CPPS – Cyber-Physical Production Systems). Los CPPSs permiten la integración de sistemas de adquisición de datos tradicionales y novedosos sistemas de procesamiento inteligente de datos, con el objetivo de extraer información y mejorar el rendimiento general del sistema productivo. Para lograrlo, es necesario cerrar la brecha existente entre los sistemas de control y los niveles superiores. Este trabajo propone una aproximación en el desarrollo de aplicaciones bajo la norma IEC-61499 para el intercambio de datos entre el nivel de planta y las capas más altas empleando el estándar industrial OPC UA. La comunicación OPC UA ofrece mecanismos de suscripción que permiten una integración eficiente y sencilla de recursos que residen en diferentes dispositivos. Además, dado que la arquitectura OPC UA permite su ejecución incluso en dispositivos empotrados, la propuesta aportada en este artículo permite adquirir información de la planta empleando arquitecturas de bajo coste, al mismo tiempo que se posibilita un diseño basado en componentes con independencia de la plataforma hardware utilizada.Este trabajo ha sido financiado por la Universidad del País Vasco (UPV/EHU) en el marco del proyecto UFI 11/28, por el MCYT y FEDER bajo el proyecto DPI2015-68602-R, y por el Ministerio de Educación e Investigación de Ecuador a través de subvención SENESCYT-2014Universidad del País Vasco = Euskal Herriko Unibertsitatea; UFI 11/28https://doi.org/10.17979/spudc.978849749808

    Maintainability and evolvability of control software in machine and plant manufacturing -- An industrial survey

    Full text link
    Automated Production Systems (aPS) have lifetimes of up to 30-50 years, throughout which the desired products change ever more frequently. This requires flexible, reusable control software that can be easily maintained and evolved. To evaluate selected criteria that are especially relevant for maturity in software maintainability and evolvability of aPS, the approach SWMAT4aPS+ builds on a questionnaire with 52 questions. The three main research questions cover updates of software modules and success factors for both cross-disciplinary development as well as reusable models. This paper presents the evaluation results of 68 companies from machine and plant manufacturing (MPM). Companies providing automation devices and/or engineering tools will be able to identify challenges their customers in MPM face. Validity is ensured through feedback of the participating companies and an analysis of the statistical unambiguousness of the results. From a software or systems engineering point of view, almost all criteria are fulfilled below expectations
    corecore