6,674 research outputs found

    Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters

    Get PDF
    Costs and losses have been calculated for several different network topologies, which centralise the turbine power electronic converters, in order to improve access for maintenance. These are divided into star topologies, where each turbine is connected individually to its own converter on a platform housing many converters, and cluster topologies, where multiple turbines are connected through a single large converter. Both AC and DC topologies were considered, along with standard string topologies for comparison. Star and cluster topologies were both found to have higher costs and losses than the string topology. In the case of the star topology, this is due to the longer cable length and higher component count. In the case of the cluster topology, this is due to the reduced energy capture from controlling turbine speeds in clusters rather than individually. DC topologies were generally found to have a lower cost and loss than AC, but the fact that the converters are not commercially available makes this advantage less certain

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through

    Power Quality Improvement Wind Energy System Using Cascaded Multilevel Inverter

    No full text
    In this paper, a wind energy conversion system based on a cascaded H-bridge multilevel inverter (CHBMLI) topology has been proposed to be used for the grid interface of large split winding alternators (SWAs). A new method has been suggested for the generation of reference currents for the voltage source inverter (VSI) depending upon the available wind power. The CHBMLI has been used as a VSI and operated in a current control mode order to achieve the objectives of real power injection and load compensation (power factor correction, load balancing, and harmonic compensation) based on the proposed reference generation scheme. In the field excitation control of SWA provides a single means vary the dc link voltages of all the CHBs simultaneously and proportionatel

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    Generalized small-signal modelling of dual active bridge DC/DC converter

    Get PDF
    this paper presents a novel generalised approach of the small-signal modelling of dual active bridge (DAB) DC/DC converter. The adopted analysis is based on a per-unit fundamental frequency representation of the DAB. The outcome of the proposed modelling approach is a small signal, linearised, state-space DAB model; which is considered as a main building block for future control applications. The developed small signal DAB model includes all possible degrees of freedom affecting the performance of the DAB; this includes the voltage conversion ratio to allow the study of all DAB operation modes (i.e.: unity-gain and buck/boost modes.). Furthermore, since triple phase shift control (TPS) is used in this development work, the proposed model incorporates phase shift in addition to duty ratios. This feature allows for bridge voltage regulation, which is essential for efficient DAB operation in the case of buck/boost operation. Another key achievement is that the proposed small signal modelling methodology can be applied to any bidirectional DC-DC converter regardless of ratings, parameter values and number of ports. Extensive simulation is carried out to verify the proposed analysis

    Verification Of Non-Isolated Lcc Resonant Full Bridge Dc-Dc Converter For Solar Photovoltaic Systems

    Get PDF
    Awareness about global warming and fasting depleting fossil fuels has intensified researcher’s interest toward exploration of renewable energy resources. Among these renewable resources, photovoltaic (solar energy) is getting more attention because of its potential to be the greatest contributor of electrical energy generation. Generally DC-DC converters are used to interface solar panels with inverter which converters dc power to ac. The function of dc-dc converter is basically to step up the low dc voltage to desired higher output voltage level. Conventional switch mode dc-dc converters have problems of high switching loss and EMI. Resonant converters on the other hand have low switching loss and EMI when they operate under ZVS conditions. The aim of this research work is to explore the feasibility of a non-isolated series-parallel resonant dc-dc converter for application in PV systems. Accordingly, the working action, analysis and design procedure of series-parallel resonant full-bridge dc-dc converter is described in detail. To evaluate the performance of converter both simulation and experimental studies are carried out. First of all, converter is simulated using LT-Spice to evaluate the capability of converter to step-up dc voltage from 30V to 300V. It is shown that converter can provide desired voltage gain both for nominal and light loads with theoretical maximum efficiency up to 94%. Finally a low power laboratory prototype of the converter is built to test and evaluate the performance of the converter. The experimental results show promising performance of the converter up to 88% efficiency at 75 kHz resonance frequency. Therefore, this converter is suitable for application in PV systems where galvanic isolation is not necessary

    Power-electronic systems for the grid integration of renewable energy sources: a survey

    Get PDF
    The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a powerelectronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

    Fuzzy logic controller for half car active suspension system

    Get PDF
    This work presents the MATLAB/Simulink simulation results of half car active suspension system controlled by the fuzzy logic controller. The half car model consists of one front and rear wheel. Firstly, a mathematical model of the suspension system is developed. Based on the developed mathematical model, the fuzzy logic controller for the system is designed. The input to the controller is the vertical displacement and velocity of the front body of the vehicle. The membership function of these two variables is adjusted accordingly so that the output, i.e., the car body acceleration, the deflection of the wheels and other output are better than that of the passive suspension system. The results clearly show that all of the active suspension system output has improved when compared to that of the passive system

    Isolated Single-stage Power Electronic Building Blocks Using Medium Voltage Series-stacked Wide-bandgap Switches

    Get PDF
    The demand for efficient power conversion systems that can process the energy at high power and voltage levels is increasing every day. These systems are to be used in microgrid applications. Wide-bandgap semiconductor devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) are very promising candidates due to their lower conduction and switching losses compared to the state-of-the-art Silicon (Si) devices. The main challenge for these devices is that their breakdown voltages are relatively lower compared to their Si counterpart. In addition, the high frequency operation of the wide-bandgap devices are impeded in many cases by the magnetic core losses of the magnetic coupling components (i.e. coupled inductors and/or high frequency transformers) utilized in the power converter circuit. Six new dc-dc converter topologies are propose. The converters have reduced voltage stresses on the switches. Three of them are unidirectional step-up converters with universal input voltage which make them excellent candidates for photovoltaic and fuel cell applications. The other three converters are bidirectional dc-dc converters with wide voltage conversion ratios. These converters are very good candidates for the applications that require bidirectional power flow capability. In addition, the wide voltage conversion ratios of these converters can be utilized for applications such as energy storage systems with wide voltage swings
    corecore