152,341 research outputs found

    Efficient algorithms for decision tree cross-validation

    Full text link
    Cross-validation is a useful and generally applicable technique often employed in machine learning, including decision tree induction. An important disadvantage of straightforward implementation of the technique is its computational overhead. In this paper we show that, for decision trees, the computational overhead of cross-validation can be reduced significantly by integrating the cross-validation with the normal decision tree induction process. We discuss how existing decision tree algorithms can be adapted to this aim, and provide an analysis of the speedups these adaptations may yield. The analysis is supported by experimental results.Comment: 9 pages, 6 figures. http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=3478

    Automating biomedical data science through tree-based pipeline optimization

    Full text link
    Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement a Tree-based Pipeline Optimization Tool (TPOT) and demonstrate its effectiveness on a series of simulated and real-world genetic data sets. In particular, we show that TPOT can build machine learning pipelines that achieve competitive classification accuracy and discover novel pipeline operators---such as synthetic feature constructors---that significantly improve classification accuracy on these data sets. We also highlight the current challenges to pipeline optimization, such as the tendency to produce pipelines that overfit the data, and suggest future research paths to overcome these challenges. As such, this work represents an early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding

    Mining data streams using option trees (revised edition, 2004)

    Get PDF
    The data stream model for data mining places harsh restrictions on a learning algorithm. A model must be induced following the briefest interrogation of the data, must use only available memory and must update itself over time within these constraints. Additionally, the model must be able to be used for data mining at any point in time. This paper describes a data stream classi_cation algorithm using an ensemble of option trees. The ensemble of trees is induced by boosting and iteratively combined into a single interpretable model. The algorithm is evaluated using benchmark datasets for accuracy against state-of-the-art algorithms that make use of the entire dataset

    Generating Compact Tree Ensembles via Annealing

    Full text link
    Tree ensembles are flexible predictive models that can capture relevant variables and to some extent their interactions in a compact and interpretable manner. Most algorithms for obtaining tree ensembles are based on versions of boosting or Random Forest. Previous work showed that boosting algorithms exhibit a cyclic behavior of selecting the same tree again and again due to the way the loss is optimized. At the same time, Random Forest is not based on loss optimization and obtains a more complex and less interpretable model. In this paper we present a novel method for obtaining compact tree ensembles by growing a large pool of trees in parallel with many independent boosting threads and then selecting a small subset and updating their leaf weights by loss optimization. We allow for the trees in the initial pool to have different depths which further helps with generalization. Experiments on real datasets show that the obtained model has usually a smaller loss than boosting, which is also reflected in a lower misclassification error on the test set.Comment: Comparison with Random Forest included in the results sectio

    Building Combined Classifiers

    Get PDF
    This chapter covers different approaches that may be taken when building an ensemble method, through studying specific examples of each approach from research conducted by the authors. A method called Negative Correlation Learning illustrates a decision level combination approach with individual classifiers trained co-operatively. The Model level combination paradigm is illustrated via a tree combination method. Finally, another variant of the decision level paradigm, with individuals trained independently instead of co-operatively, is discussed as applied to churn prediction in the telecommunications industry
    corecore