186 research outputs found

    Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics

    Get PDF
    International audienceIn this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features

    Building extraction and change detection in multitemporal remotely sensed images with multiple birth and death dynamics

    Full text link

    Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics

    Get PDF
    International audienceIn this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: (1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low level change information between the time layers and object level building description to recognize and separate changed and unaltered buildings. (2) To answering the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. (3) To simultaneously ensure the convergence, optimality and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel non-uniform stochastic object birth process, which generates relevant objects with higher probability based on low-level image features

    Building detection in a single remotely sensed image with a point process of rectangles

    Get PDF
    International audienceIn this paper we introduce a probabilistic approach of building extraction in remotely sensed images. To cope with data heterogeneity we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. A global optimization process attempts to find the optimal configuration of buildings, considering simultaneously the observed data, prior knowledge, and interactions between the neighboring building parts. The proposed method is evaluated on various aerial image sets containing more than 500 buildings, and the results are matched against two state-of-the-art techniques

    Building Detection in a Single Remotely Sensed Image with a Point Process of Rectangles

    Full text link

    Moving Target Analysis in ISAR Image Sequences with a Multiframe Marked Point Process Model

    Get PDF
    In this paper we propose a Multiframe Marked Point Process model of line segments and point groups for automatic target structure extraction and tracking in Inverse Synthetic Aperture Radar (ISAR) image sequences. For the purpose of dealing with scatterer scintillations and high speckle noise in the ISAR frames, we obtain the resulting target sequence by an iterative optimization process, which simultaneously considers the observed image data and various prior geometric interaction constraints between the target appearances in the consecutive frames. A detailed quantitative evaluation is performed on 8 real ISAR image sequences of different carrier ship and airplane targets, using a test database containing 545 manually annotated frames

    A Bayesian Approach on People Localization in Multicamera Systems

    Get PDF
    In this paper we introduce a Bayesian approach on multiple people localization in multi-camera systems. First, pixel-level features are extracted, which are based on physical properties of the 2-D image formation process, and provide information about the head and leg positions of the pedestrians, distinguishing standing and walking people, respectively. Then features from the multiple camera views are fused to create evidence for the location and height of people in the ground plane. This evidence accurately estimates the leg position even if either the area of interest is only a part of the scene, or the overlap ratio of the silhouettes from irrelevant outside motions with the monitored area is significant. Using this information we create a 3-D object configuration model in the real world. We also utilize a prior geometrical constraint, which describes the possible interactions between two pedestrians. To approximate the position of the people, we use a population of 3-D cylinder objects, which is realized by a Marked Point Process. The final configuration results are obtained by an iterative stochastic energy optimization algorithm. The proposed approach is evaluated on two publicly available datasets, and compared to a recent state-of-the-art technique. To obtain relevant quantitative test results, a 3-D Ground Truth annotation of the real pedestrian locations is prepared, while two different error metrics and various parameter settings are proposed and evaluated, showing the advantages of our proposed model

    An Embedded Marked Point Process Framework for Three-Level Object Population Analysis

    Full text link
    corecore