668 research outputs found

    Predicting Academic Performance of Potential Electrical Engineering Majors

    Get PDF
    Data Analytics for education is fast growing into an important part of higher learning institutions, which helps to improve student success rate and decision-making with regards to teaching methods, course selection, and student retention. The undergraduate program at Texas A&M University requires students to take up a general engineering program during their freshman and sophomore years. During the course of this period, student academic performance, abilities and participation is assessed. As per the Entry-to-a-Major policy, departments place the students in the best possible major based on their displayed capacities and in alignment with their goals. Our focus is on the Electrical Engineering department and the success rate of students with aspirations and background in this major. An approach to improve student retention rate is to predict beforehand the performance of students in specific course disciplines based on the information that is mined from their previous records. Based on the outcome, decisions can be made in advance regarding their further enrollment in the area and need for specific attention in certain aspects to get students up to the benchmark. In this thesis, we put together a set attributes related to students in the general program and with an electrical engineering aligned background. The analysis centers around building a method that explains the joint influence of attributes on our target variable and comparison of prediction performances between our models. The prime tools used are Supervised classification and Ensemble learning methods. We also develop a metric-based learning framework suitable for our application that enables competitive accuracy results and efficient pattern recognition from the underlying data

    Undirected cyclic graph based multiclass pair-wise classifier: Classifier number reduction maintaining accuracy

    Get PDF
    Supervised Classification approaches try to classify correctly the new unlabelled examples based on a set of well-labelled samples. Nevertheless, some classification methods were formulated for binary classification problems and has difficulties for multi-class problems. Binarization strategies decompose the original multi-class dataset into multiple two-class subsets. For each new sub-problem a classifier is constructed. One-vs-One is a popular decomposition strategy that in each sub-problem discriminates the cases that belong to a pair of classes, ignoring the remaining ones. One of its drawbacks is that it creates a large number of classifiers, and some of them are irrelevant. In order to reduce the number of classifiers, in this paper we propose a new method called Decision Undirected Cyclic Graph. Instead of making the comparisons of all the pair of classes, each class is compared only with other two classes; evolutionary computation is used in the proposed approach in order to obtain suitable class pairing. In order to empirically show the performance of the proposed approach, a set of experiments over four popular Machine Learning algorithms are carried out, where our new method is compared with other well-known decomposition strategies of the literature obtaining promising results.The authors gratefully acknowledge J. Ceberio for his assistance during the work. The work described in this paper was partially conducted within the Basque Government Research Team Grant IT313-10. I. Mendialdua holds a Grant from Basque Government

    Hierarchical Label Partitioning for Large Scale Classification

    Get PDF
    International audienceExtreme classification task where the number of classes is very large has received important focus over the last decade. Usual efficient multi-class classification approaches have not been designed to deal with such large number of classes. A particular issue in the context of large scale problems concerns the computational classification complexity : best multi-class approaches have generally a linear complexity with respect to the number of classes which does not allow these approaches to scale up. Recent works have put their focus on using hierarchical classification process in order to speed-up the classification of new instances. A priori information on labels is not always available nor useful to build hierarchical models. Finding a suitable hierarchical organization of the labels is thus a crucial issue as the accuracy of the model depends highly on the label assignment through the label tree. We propose in this work a new algorithm to build iteratively a hierarchical label structure by proposing a partitioning algorithm which optimizes simultaneously the structure in terms of classification complexity and the label partitioning problem in order to achieve high classification performances. Beginning from a flat tree structure, our algorithm selects iteratively a node to expand by adding a new level of nodes between the considered node and its children. This operation increases the speed-up of the classification process. Once the node is selected, best partitioning of the classes has to be computed. We propose to consider a measure based on the maximization of the expected loss of the sub-levels in order to minimize the global error of the structure. This choice enforces hardly separable classes to be group together in same partitions at the first levels of the tree structure and it delays errors at a deep level of the structure where there is no incidence on the accuracy of other classes
    • …
    corecore