60,241 research outputs found

    Building high availability central data catalog service powered by IBM Mainframe technology in the ukrainian national grid-infrastructure

    Get PDF
    Проведено аналіз особливостей застосування служб рівня кооперації української національної грід-інфраструктури, зокрема служби центрального каталогу даних LFC. Сформовано вимоги до реалізації високодоступного центрального каталога даних із використанням високонадійного обчислювального комплексу IBM Mainframe Z800. Показано особливості апаратної архітектури z/Architecture та програмного забезпечення проміжного рівня Nordugrid ARC, що були враховані при розробленні методики формування високодоступної служби LFC. Методику впроваджено для побудови системи з використанням мейнфрейму та обчислювального кластеру Київського національного університету імені Тараса Шевченка. Техніку формування опису грід-завдання для використання конфігурації високонадійної служби запроваджено до реалізації грід-порталу віртуальної лабораторії MolDynGrid в українській національній грід-інфраструктурі.Analysis of cooperation level service applications in Ukrainian national grid-infrastructure is conducted focusing on LFC central data catalog services. Methods for building high available central data catalog service employing IBM Z800 Mainframe installation are presented. Specialities of zSeries hardware architecture and Nordugrid ARC middleware software were taken into account for service implementation on top of the mainframe and HPC cluster of Taras Shevchenko National University of Kyiv. Grid job description generation technique for accessing high available LFC service was applied to the implementation of MolDynGrid Virtual Laboratory grid-portal in the Ukrainian national grid-infrastructure

    GRAIL – Grid Access and Instrumentation Tool

    Get PDF
    Since the release of Globus Toolkit 4 Web services enrich the world of Grid Computing. They provide methods to develop modular Grid applications which can be parallelized easily. The access to Web services is mostly solved by complex command line tools which need a good deal of knowledge of the underlaying Grid technologies. GRAIL is intended to fill the gap between existing Grid access methods and both the developer who wants to utilize the Grid for own developments and the user who wants to access the Grid without much additional knowledge. It simplifies the access and the testing of Web services for the Globus Grid middleware. GRAIL provides an easy to use graphical user interface for executing Web services and enables the user to construct complex relationships between services to realize parallel execution. The underlying framework allows an easy integration of any Web service or other arbitrary task without much additional effort for the developer. Existing technologies, shipped with the Globus Toolkit, are seamlessly integrated into GRAIL

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    Developing an e-infrastructure for social science

    Get PDF
    We outline the aims and progress to date of the National Centre for e-Social Science e-Infrastructure project. We examine the challenges faced by the project, namely in ensuring outputs are appropriate to social scientists, managing the transition from research projects to service and embedding software and data within a wider infrastructural framework. We also provide pointers to related work where issues which have ramifications for this and similar initiatives are being addressed

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenś behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    EGI: anOpen e-Infrastructure Ecosystem for the Digital European Research Area

    Get PDF
    Bringing the digital European Research Area (ERA) online means modernising Europe’s research infrastructure by promoting open science through the availability, accessibility and reuse of scientific data and results, the use of web- based tools that facilitate scientific collaboration and ensuring public access to research. As the European Grid Infrastructure (EGI) is the largest European distributed computing infrastructure providing 24/7 access to large scale computing, storage and data resources through a federation of national resource providers, it allows scientists from all disciplines to make the most out of the latest computing technologies for the benefit of their research. This paper describes the methodology and approach for defining EGI’s role in bringing this digital ERA online. The work presented defines the roles and functions of EGI as an open ICT ecosystem, required service redesign, the added value of EGI for the European research communities and demonstrates the role that EGI plays in contributing to the Europe 2020 strategy for social-economic impact

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    corecore