1,019 research outputs found

    Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics

    Get PDF
    none7noHuman activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.openBuja I.; Sabella E.; Monteduro A.G.; Chiriaco M.S.; De Bellis L.; Luvisi A.; Maruccio G.Buja, I.; Sabella, E.; Monteduro, A. G.; Chiriaco, M. S.; De Bellis, L.; Luvisi, A.; Maruccio, G

    Diagnostic Tests and their Application in the Management of Soil- and Water-borne Oomycete Pathogen Species

    Get PDF
    Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectivenes

    Plant pest surveillance: from satellites to molecules

    Get PDF
    Open Access Article; Published online: 15 Mar 2021Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment

    From scientist to society

    Get PDF
    ‱ How to restore a park or an old mansion? ‱ Is it possible to grow grapes in your own garden? ‱ Should you plant birch-trees in a fallow field? ‱ How to restore an old mill inherited from your Grandpa? ‱ Is the pond behind the sauna at our farm suitable for breeding carps? The researchers at the Eesti MaaĂŒlikool (Estonian University of Life Sciences) are sure to know the answers to these five questions. The scientists of the EMU are bound to know answers to many other questions as well. You can find such questions by the dozen in the present booklet. On the other hand, we would like to draw your attention to the know-how at our University and show where the disciplines fostered here are heading to. The booklet includes a list of themes for applied research and development. The themes break up into nine groups: plant, forest, animal, food, energy, environmental, economic, construction, and technological science. We are gladly ready to help the farmer, entrepreneur or local government

    Innovative Solutions to Human–Wildlife Conflicts

    Get PDF
    The mission of the U.S. Department of Agriculture’s (USDA) Wildlife Services (WS) Program is to provide Federal leadership in managing problems caused by wildlife. The National Wildlife Research Center (NWRC) functions as the research arm of WS by providing scientific information on the development of socially acceptable methods for wildlife damage management. As part of WS’ strategic plan to improve the coexistence of people and wildlife, NWRC has identified four strategic program goals: (1) developing methods, (2) providing wildlife services, (3) valuing and investing in people, and (4) enhancing information and communication. WS is dedicated to helping meet the wildlife damage management needs of the United States by building on NWRC’s strengths in these four key areas. This annual research highlights report is structured around these program goals
    • 

    corecore