68 research outputs found

    Building an IDE for the Calculational Derivation of Imperative Programs

    Full text link
    In this paper, we describe an IDE called CAPS (Calculational Assistant for Programming from Specifications) for the interactive, calculational derivation of imperative programs. In building CAPS, our aim has been to make the IDE accessible to non-experts while retaining the overall flavor of the pen-and-paper calculational style. We discuss the overall architecture of the CAPS system, the main features of the IDE, the GUI design, and the trade-offs involved.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    From LCF to Isabelle/HOL

    Get PDF
    Interactive theorem provers have developed dramatically over the past four decades, from primitive beginnings to today's powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They include automatic proof search, borrowing techniques from the world of first order theorem proving, but also the automatic search for counterexamples. They include a highly readable structured language of proofs and a unique interactive development environment for editing live proof documents. Everything rests on the foundation conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical and versatile tool. It is used by system designers, mathematicians and many others

    Automating Verification of State Machines with Reactive Designs and Isabelle/UTP

    Full text link
    State-machine based notations are ubiquitous in the description of component systems, particularly in the robotic domain. To ensure these systems are safe and predictable, formal verification techniques are important, and can be cost-effective if they are both automated and scalable. In this paper, we present a verification approach for a diagrammatic state machine language that utilises theorem proving and a denotational semantics based on Unifying Theories of Programming (UTP). We provide the necessary theory to underpin state machines (including induction theorems for iterative processes), mechanise an action language for states and transitions, and use these to formalise the semantics. We then describe the verification approach, which supports infinite state systems, and exemplify it with a fully automated deadlock-freedom check. The work has been mechanised in our proof tool, Isabelle/UTP, and so also illustrates the use of UTP to build practical verification tools.Comment: 18 pages, 16th Intl. Conf. on Formal Aspects of Component Software (FACS 2018), October 2018, Pohang, South Kore

    Mechanizing Abstract Interpretation

    Get PDF
    It is important when developing software to verify the absence of undesirable behavior such as crashes, bugs and security vulnerabilities. Some settings require high assurance in verification results, e.g., for embedded software in automobiles or airplanes. To achieve high assurance in these verification results, formal methods are used to automatically construct or check proofs of their correctness. However, achieving high assurance for program analysis results is challenging, and current methods are ill suited for both complex critical domains and mainstream use. To verify the correctness of software we consider program analyzers---automated tools which detect software defects---and to achieve high assurance in verification results we consider mechanized verification---a rigorous process for establishing the correctness of program analyzers via computer-checked proofs. The key challenges to designing verified program analyzers are: (1) achieving an analyzer design for a given programming language and correctness property; (2) achieving an implementation for the design; and (3) achieving a mechanized verification that the implementation is correct w.r.t. the design. The state of the art in (1) and (2) is to use abstract interpretation: a guiding mathematical framework for systematically constructing analyzers directly from programming language semantics. However, achieving (3) in the presence of abstract interpretation has remained an open problem since the late 1990's. Furthermore, even the state-of-the art which achieves (3) in the absence of abstract interpretation suffers from the inability to be reused in the presence of new analyzer designs or programming language features. First, we solve the open problem which has prevented the combination of abstract interpretation (and in particular, calculational abstract interpretation) with mechanized verification, which advances the state of the art in designing, implementing, and verifying analyzers for critical software. We do this through a new mathematical framework Constructive Galois Connections which supports synthesizing specifications for program analyzers, calculating implementations from these induced specifications, and is amenable to mechanized verification. Finally, we introduce reusable components for implementing analyzers for a wide range of designs and semantics. We do this though two new frameworks Galois Transformers and Definitional Abstract Interpreters. These frameworks tightly couple analyzer design decisions, implementation fragments, and verification properties into compositional components which are (target) programming-language independent and amenable to mechanized verification. Variations in the analysis design are then recovered by simply re-assembling the combination of components. Using this framework, sophisticated program analyzers can be assembled by non-experts, and the result are guaranteed to be verified by construction

    Automating Verification of State Machines with Reactive Designs and Isabelle/UTP

    Get PDF
    State-machine based notations are ubiquitous in the description of component systems, particularly in the robotic domain. To ensure these systems are safe and predictable, formal verification techniques are important, and can be cost-effective if they are both automated and scalable. In this paper, we present a verification approach for a diagrammatic state machine language that utilises theorem proving and a denotational semantics based on Unifying Theories of Programming (UTP). We provide the necessary theory to underpin state machines (including induction theorems for iterative processes), mechanise an action language for states and transitions, and use these to formalise the semantics. We then describe the verification approach, which supports infinite state systems, and exemplify it with a fully automated deadlock-freedom check. The work has been mechanised in our proof tool, Isabelle/UTP, and so also illustrates the use of UTP to build practical verification tools

    Reasoning about correctness properties of a coordination programming language

    Get PDF
    Safety critical systems place additional requirements to the programming language used to implement them with respect to traditional environments. Examples of features that in uence the suitability of a programming language in such environments include complexity of de nitions, expressive power, bounded space and time and veri ability. Hume is a novel programming language with a design which targets the rst three of these, in some ways, contradictory features: fully expressive languages cannot guarantee bounds on time and space, and low-level languages which can guarantee space and time bounds are often complex and thus error-phrone. In Hume, this contradiction is solved by a two layered architecture: a high-level fully expressive language, is built on top of a low-level coordination language which can guarantee space and time bounds. This thesis explores the veri cation of Hume programs. It targets safety properties, which are the most important type of correctness properties, of the low-level coordination language, which is believed to be the most error-prone. Deductive veri cation in Lamport's temporal logic of actions (TLA) is utilised, in turn validated through algorithmic experiments. This deductive veri cation is mechanised by rst embedding TLA in the Isabelle theorem prover, and then embedding Hume on top of this. Veri cation of temporal invariants is explored in this setting. In Hume, program transformation is a key feature, often required to guarantee space and time bounds of high-level constructs. Veri cation of transformations is thus an integral part of this thesis. The work with both invariant veri cation, and in particular, transformation veri cation, has pinpointed several weaknesses of the Hume language. Motivated and in uenced by this, an extension to Hume, called Hierarchical Hume, is developed and embedded in TLA. Several case studies of transformation and invariant veri cation of Hierarchical Hume in Isabelle are conducted, and an approach towards a calculus for transformations is examined.James Watt ScholarshipEngineering and Physical Sciences Research Council (EPSRC) Platform grant GR/SO177

    External Insulation Systems for Cryogenic Storage Systems

    Get PDF
    Multilayer dielectric film reflector applied to cryogenic insulation material

    Unifying Semantic Foundations for Automated Verification Tools in Isabelle/UTP

    Get PDF
    The growing complexity and diversity of models used for engineering dependable systems implies that a variety of formal methods, across differing abstractions, paradigms, and presentations, must be integrated. Such an integration requires unified semantic foundations for the various notations, and co-ordination of a variety of automated verification tools. The contribution of this paper is Isabelle/UTP, an implementation of Hoare and He’s Unifying Theories of Programming, a framework for unification of formal semantics. Isabelle/UTP permits the mechanisation of computational theories for diverse paradigms, and their use in constructing formalised semantics. These can be further applied in the development of verification tools, harnessing Isabelle’s proof automation facilities. Several layers of mathematical foundations are developed, including lenses to model variables and state spaces as algebraic objects, alphabetised predicates and relations to model programs, algebraic and axiomatic semantics, proof tools for Hoare logic and refinement calculus, and UTP theories to encode computational paradigms

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Seit 1984 veranstaltet die GI--Fachgruppe "Programmiersprachen und Rechenkonzepte" regelmäßig im Frühjahr einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kontakte
    • …
    corecore