335 research outputs found

    Context-based Grouping and Recommendation in MANETs

    No full text
    International audienceWe propose in this chapter a context grouping mechanism for context distribution over MANETs. Context distribution is becoming a key aspect for successful context-aware applications in mobile and ubiquitous computing environments. Such applications need, for adaptation purposes, context information that is acquired by multiple context sensors distributed over the environment. Nevertheless, applications are not interested in all available context information. Context distribution mechanisms have to cope with the dynamicity that characterizes MANETs and also prevent context information to be delivered to nodes (and applications) that are not interested in it. Our grouping mechanism organizes the distribution of context information in groups whose definition is context based: each context group is defined based on a criteria set (e.g. the shared location and interest) and has a dissemination set, which controls the information that can be shared in the group. We propose a personalized and dynamic way of defining and joining groups by providing a lattice-based classification and recommendation mechanism that analyzes the interrelations between groups and users, and recommend new groups to users, based on the interests and preferences of the user

    Not Always Sparse: Flooding Time in Partially Connected Mobile Ad Hoc Networks

    Full text link
    In this paper we study mobile ad hoc wireless networks using the notion of evolving connectivity graphs. In such systems, the connectivity changes over time due to the intermittent contacts of mobile terminals. In particular, we are interested in studying the expected flooding time when full connectivity cannot be ensured at each point in time. Even in this case, due to finite contact times durations, connected components may appear in the connectivity graph. Hence, this represents the intermediate case between extreme cases of fully mobile ad hoc networks and fully static ad hoc networks. By using a generalization of edge-Markovian graphs, we extend the existing models based on sparse scenarios to this intermediate case and calculate the expected flooding time. We also propose bounds that have reduced computational complexity. Finally, numerical results validate our models

    The Next 700 Impossibility Results in Time-Varying Graphs

    Get PDF
    We address highly dynamic distributed systems modeled by time-varying graphs (TVGs). We interest in proof of impossibility results that often use informal arguments about convergence. First, we provide a distance among TVGs to define correctly the convergence of TVG sequences. Next, we provide a general framework that formally proves the convergence of the sequence of executions of any deterministic algorithm over TVGs of any convergent sequence of TVGs. Finally, we illustrate the relevance of the above result by proving that no deterministic algorithm exists to compute the underlying graph of any connected-over-time TVG, i.e., any TVG of the weakest class of long-lived TVGs

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures
    • …
    corecore