5,862 research outputs found

    Service-oriented coordination platform for technology-enhanced learning

    Get PDF
    It is currently difficult to coordinate learning processes, not only because multiple stakeholders are involved (such as students, teachers, administrative staff, technical staff), but also because these processes are driven by sophisticated rules (such as rules on how to provide learning material, rules on how to assess students’ progress, rules on how to share educational responsibilities). This is one of the reasons for the slow progress in technology-enhanced learning. Consequently, there is a clear demand for technological facilitation of the coordination of learning processes. In this work, we suggest some solution directions that are based on SOA (Service-Oriented Architecture). In particular, we propose a coordination service pattern consistent with SOA and based on requirements that follow from an analysis of both learning processes and potentially useful support technologies. We present the service pattern considering both functional and non-functional issues, and we address policy enforcement as well. Finally, we complement our proposed architecture-level solution directions with an example. The example illustrates our ideas and is also used to identify: (i) a short list of educational IT services; (ii) related non-functional concerns; they will be considered in future work

    Flexible Decision Control in an Autonomous Trading Agent

    Get PDF
    An autonomous trading agent is a complex piece of software that must operate in a competitive economic environment and support a research agenda. We describe the structure of decision processes in the MinneTAC trading agent, focusing on the use of evaluators ñ€“ configurable, composable modules for data analysis and prediction that are chained together at runtime to support agent decision-making. Through a set of examples, we show how this structure supports sales and procurement decisions, and how those decision processes can be modified in useful ways by changing evaluator configurations. To put this work in context, we also report on results of an informal survey of agent design approaches among the competitors in the Trading Agent Competition for Supply Chain Management (TAC SCM).autonomous trading agent;decision processes

    Utilizing the blackboard paradigm to implement a workflow engine

    Get PDF
    Workflow management has evolved into a mature field with numerous workflow management systems with scores of features. These systems are designed to automate business processes of organisations. However, many of these workflow engines struggle to support complex workflows. There has been relatively little research into building a workflow engine utilizing the blackboard paradigm. The blackboard paradigm can be characterized as specialists interacting with and updating a centralized data structure, namely the blackboard, with partial and complete solutions. The opportunistic control innate to the blackboard paradigm can be leveraged to support the execution of complex workflows. Furthermore, the blackboard architecture can be seen to accommodate comprehensive workflow functionality. This research aims to verify whether or not the blackboard paradigm can be used to build a workflow engine. To validate this research, a prototype was designed and developed following stringent guidelines in order to remain true to the blackboard paradigm. Four main perspectives of workflow management namely the functional, behavioural, informational and operational aspects with their quality indicators and requirements were used to evaluate the prototype. This evaluation approach was chosen since it is universally applicable to any workflow engine and thereby provides a common platform on which the prototype can be judged and compared against other workflow engines. The two most important quality indicators are the level of support a workflow engine can provide for 20 main workflow patterns and 40 main data patterns. Test cases based on these patterns were developed and executed within the prototype to determine the level of support. It was found that the prototype supports 85% of all the workflow patterns and 72.5% of all the data patterns. This reveals some functional limitations in the prototype and improvement suggestions are given that can boost these scores to 95% and 90% for workflow and data patterns respectively. The nature of the blackboard paradigm only prevents support of only 5% and 10% of the workflow and data patterns respectively. The prototype is shown to substantially outperform most other workflow engines in the level of patterns support. Besides support for these patterns, other less important quality indicators provided by the main aspects of workflow management are also found to be present in the prototype. Given the above evidence, it is possible to conclude that a workflow engine can be successfully built utilizing the blackboard paradigm

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Operator interfaces for the lifecycle support of component based automation systems

    Get PDF
    Current manufacturing automation systems (specifically the powertrain sector) have been facing challenges with constant pressures of globalisation, environmental concerns and ICT (Information and Communication Technology) innovations. These challenges instigate new demands for shorter product lifecycles and require customised products to be manufactured as efficiently as possible. Manufacturing systems must therefore be agile to remain competitive by supporting frequent reconfigurations involving distributed engineering activities. [Continues.

    Implementation of context-aware workflows with Multi-agent Systems

    Get PDF
    Systems in Ambient Intelligence (AmI) need to manage workflows that represent users’ activities. These workflows can be quite complex, as they may involve multiple participants, both physical and computational, playing different roles. Their execution implies monitoring the development of the activities in the environment, and taking the necessary actions for them and the workflow to reach a certain end. The context-aware approach supports the development of these applications to cope with event processing and regarding information issues. Modeling the actors in these context-aware workflows, where complex decisions and interactions must be considered, can be achieved with multi-agent systems. Agents are autonomous entities with sophisticated and flexible behaviors, which are able to adapt to complex and evolving environments, and to collaborate to reach common goals. This work presents architectural patterns to integrate agents on top of an existing context-aware architecture. This allows an additional abstraction layer on top of context-aware systems, where knowledge management is performed by agents.This approach improves the flexibility of AmI systems and facilitates their design. A case study on guiding users in buildings to their meetings illustrates this approach
    • 

    corecore