169,661 research outputs found

    Information technology as boundary object for transformational learning

    Get PDF
    Collaborative work is considered as a way to improve productivity and value generation in construction. However, recent research demonstrates that socio-cognitive factors related to fragmentation of specialized knowledge may hinder team performance. New methods based on theories of practice are emerging in Computer Supported Collaborative Work and organisational learning to break these knowledge boundaries, facilitating knowledge sharing and the generation of new knowledge through transformational learning. According to these theories, objects used in professional practice play a key role in mediating interactions. Rules and methods related to these practices are also embedded in these objects. Therefore changing collaborative patterns demand reconfiguring objects that are at the boundary between specialized practices, namely boundary objects. This research is unique in presenting an IT strategy in which technology is used as a boundary object to facilitate transformational learning in collaborative design work

    Developing an IS-impact decision tool: A literature based design science roadmap

    Get PDF
    This paper derives from research-in-progress intending both Design Research (DR) and Design Science (DS) outputs; the former a management decision tool based in IS-Impact (Gable et al. 2008) kernel theory; the latter being methodological learnings deriving from synthesis of the literature and reflection on the DR ‘case study’ experience. The paper introduces a generic, detailed and pragmatic DS ‘Research Roadmap’ or methodology, deriving at this stage primarily from synthesis and harmonization of relevant concepts identified through systematic archival analysis of related literature. The scope of the Roadmap too has been influenced by the parallel study aim to undertake DR applying and further evolving the Roadmap. The Roadmap is presented in attention to the dearth of detailed guidance available to novice Researchers in Design Science Research (DSR), and though preliminary, is expected to evolve and gradually be substantiated through experience of its application. A key distinction of the Roadmap from other DSR methods is its breadth of coverage of published DSR concepts and activities; its detail and scope. It represents a useful synthesis and integration of otherwise highly disparate DSR-related concepts

    Developing digital literacy in construction management education: a design thinking led approach

    Get PDF
    Alongside the digital innovations in AEC (Architectural, Engineering and Construction) practice, are calls for a new type of digital literacy, including a new information-based literacy informed by creativity, critical analysis and the theoretical and practical knowledge of the construction profession. This paper explores the role of design thinking and the promotion of abductive problem situations when developing digital literacies in construction education. The impacts of advanced digital modelling technologies on construction management practices and education are investigated before an examination of design thinking, the role of abductive reasoning and the rise of normative models of design thinking workflows. The paper then explores the role that design thinking can play in the development of new digital literacies in contemporary construction studies. A three-part framework for the implementation of a design thinking approach to construction is presented. The paper closes with a discussion of the importance of models of design thinking for learning and knowledge production, emphasising how construction management education can benefit from them

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. ‱ common and shared understanding in requirements engineering efforts, ‱ continuous improvement, ‱ outputs of requirement engineering ‱ reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Contingent Information Systems Development

    Get PDF
    Situated approaches based on project contingencies are becoming more and more an important research topic for information systems development organizations. The Information Services Organization, which was investigated, has recognized that it should tune its systems development approaches to the specific situation. A model has been developed, dealing with the matching between prevailing contingency factors and the preconditions of already existing situated approaches. Furthermore, a generic process model for systems development, including the information systems operations stage, is proposed. This model makes it possible to derive from it specific systems development strategies. A number of basic development strategies, specific for the Information Services Organization, are described. Preconditions, specific for this organization, are added to the standard situated approaches

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    An Ontological Basis for Design Methods

    Get PDF
    This paper presents a view of design methods as process artefacts that can be represented using the function-behaviour-structure (FBS) ontology. This view allows identifying five fundamental approaches to methods: black-box, procedural, artefact-centric, formal and managerial approaches. They all describe method structure but emphasise different aspects of it. Capturing these differences addresses common terminological confusions relating to methods. The paper provides an overview of the use of the fundamental method approaches for different purposes in designing. In addition, the FBS ontology is used for developing a notion of prescriptiveness of design methods as an aggregate construct defined along four dimensions: certainty, granularity, flexibility and authority. The work presented in this paper provides an ontological basis for describing, understanding and managing design methods throughout their life cycle. Keywords: Design Methods; Function-Behaviour-Structure (FBS) Ontology; Prescriptive Design Knowledge</p

    Identifying Success Factors in Construction Projects: A Case Study

    Get PDF
    © 2015 by the Project Management Institute. Published online in Wiley Online Library. Defining "project success" has been of interest for many years, and recent developments combine multiple measurable and psychosocial factors that add to this definition. There has also been research into success factors, but little research into the causal chains through which success emerges. Following the multi-dimensionality of "success," this article shows how success factors combine in complex interactions; it describes factors contributing to project performance by a company working on two major construction programs and shows how to map and analyze paths from root causes to success criteria. The study also identifies some specific factors - some generic, some context-dependent - none of these is uncommon but here they come together synergistically
    • 

    corecore