68 research outputs found

    Building a Spiking Neural Network Model of the Basal Ganglia on SpiNNaker

    Get PDF
    We present a biologically-inspired and scalable model of the Basal Ganglia (BG) simulated on the SpiNNaker machine, a biologically-inspired low-power hardware platform allowing parallel, asynchronous computing. Our BG model consists of six cell populations, where the neuro-computational unit is a conductance-based Izhikevich spiking neuron; the number of neurons in each population is proportional to that reported in anatomical literature. This model is treated as a single-channel of action-selection in the BG, and is scaled-up to three channels with lateral cross-channel connections. When tested with two competing inputs, this three-channel model demonstrates action-selection behaviour. The SpiNNaker-based model is mapped exactly on to SpineML running on a conventional computer; both model responses show functional and qualitative similarity, thus validating the usability of SpiNNaker for simulating biologically-plausible networks. Furthermore, the SpiNNaker-based model simulates in real time for time-steps 1 ms; power dissipated during model execution is & #x2248;1.8 W

    Bio-realistic Neural Network Implementation on Loihi 2 with Izhikevich Neurons

    Full text link
    In this paper, we presented a bio-realistic basal ganglia neural network and its integration into Intel's Loihi neuromorphic processor to perform simple Go/No-Go task. To incorporate more bio-realistic and diverse set of neuron dynamics, we used Izhikevich neuron model, implemented as microcode, instead of Leaky-Integrate and Fire (LIF) neuron model that has built-in support on Loihi. This work aims to demonstrate the feasibility of implementing computationally efficient custom neuron models on Loihi for building spiking neural networks (SNNs) that features these custom neurons to realize bio-realistic neural networks

    Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor

    Full text link
    Neuromorphic computing is a new paradigm for design of both the computing hardware and algorithms inspired by biological neural networks. The event-based nature and the inherent parallelism make neuromorphic computing a promising paradigm for building efficient neural network based architectures for control of fast and agile robots. In this paper, we present a spiking neural network architecture that uses sensory feedback to control rotational velocity of a robotic vehicle. When the velocity reaches the target value, the mapping from the target velocity of the vehicle to the correct motor command, both represented in the spiking neural network on the neuromorphic device, is autonomously stored on the device using on-chip plastic synaptic weights. We validate the controller using a wheel motor of a miniature mobile vehicle and inertia measurement unit as the sensory feedback and demonstrate online learning of a simple 'inverse model' in a two-layer spiking neural network on the neuromorphic chip. The prototype neuromorphic device that features 256 spiking neurons allows us to realise a simple proof of concept architecture for the purely neuromorphic motor control and learning. The architecture can be easily scaled-up if a larger neuromorphic device is available.Comment: 6+1 pages, 4 figures, will appear in one of the Robotics conference
    • …
    corecore