215 research outputs found

    HTC Scientific Computing in a Distributed Cloud Environment

    Full text link
    This paper describes the use of a distributed cloud computing system for high-throughput computing (HTC) scientific applications. The distributed cloud computing system is composed of a number of separate Infrastructure-as-a-Service (IaaS) clouds that are utilized in a unified infrastructure. The distributed cloud has been in production-quality operation for two years with approximately 500,000 completed jobs where a typical workload has 500 simultaneous embarrassingly-parallel jobs that run for approximately 12 hours. We review the design and implementation of the system which is based on pre-existing components and a number of custom components. We discuss the operation of the system, and describe our plans for the expansion to more sites and increased computing capacity

    seL4 Microkernel for virtualization use-cases: Potential directions towards a standard VMM

    Full text link
    Virtualization plays an essential role in providing security to computational systems by isolating execution environments. Many software solutions, called hypervisors, have been proposed to provide virtualization capabilities. However, only a few were designed for being deployed at the edge of the network, in devices with fewer computation resources when compared with servers in the Cloud. Among the few lightweight software that can play the hypervisor role, seL4 stands out by providing a small Trusted Computing Base and formally verified components, enhancing its security. Despite today being more than a decade with seL4 microkernel technology, its existing userland and tools are still scarce and not very mature. Over the last few years, the main effort has been put into increasing the maturity of the kernel itself and not the tools and applications that can be hosted on top. Therefore, it currently lacks proper support for a full-featured userland Virtual Machine Monitor, and the existing one is quite fragmented. This article discusses the potential directions to a standard VMM by presenting our view of design principles and feature set needed. This article does not intend to define a standard VMM, we intend to instigate this discussion through the seL4 community

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    Deployment of NFV and SFC scenarios

    Get PDF
    Aquest ítem conté el treball original, defensat públicament amb data de 24 de febrer de 2017, així com una versió millorada del mateix amb data de 28 de febrer de 2017. Els canvis introduïts a la segona versió són 1) correcció d'errades 2) procediment del darrer annex.Telecommunications services have been traditionally designed linking hardware devices and providing mechanisms so that they can interoperate. Those devices are usually specific to a single service and are based on proprietary technology. On the other hand, the current model works by defining standards and strict protocols to achieve high levels of quality and reliability which have defined the carrier-class provider environment. Provisioning new services represent challenges at different levels because inserting the required devices involve changes in the network topology. This leads to slow deployment times and increased operational costs. To overcome the current burdens network function installation and insertion processes into the current service topology needs to be streamlined to allow greater flexibility. The current service provider model has been disrupted by the over-the-top Internet content providers (Facebook, Netflix, etc.), with short product cycles and fast development pace of new services. The content provider irruption has meant a competition and stress over service providers' infrastructure and has forced telco companies to research new technologies to recover market share with flexible and revenue-generating services. Network Function Virtualization (NFV) and Service Function Chaining (SFC) are some of the initiatives led by the Communication Service Providers to regain the lost leadership. This project focuses on experimenting with some of these already available new technologies, which are expected to be the foundation of the new network paradigms (5G, IOT) and support new value-added services over cost-efficient telecommunication infrastructures. Specifically, SFC scenarios have been deployed with Open Platform for NFV (OPNFV), a Linux Foundation project. Some use cases of the NFV technology are demonstrated applied to teaching laboratories. Although the current implementation does not achieve a production degree of reliability, it provides a suitable environment for the development of new functional improvements and evaluation of the performance of virtualized network infrastructures

    CVA6 RISC-V Virtualization: Architecture, Microarchitecture, and Design Space Exploration

    Full text link
    Virtualization is a key technology used in a wide range of applications, from cloud computing to embedded systems. Over the last few years, mainstream computer architectures were extended with hardware virtualization support, giving rise to a set of virtualization technologies (e.g., Intel VT, Arm VE) that are now proliferating in modern processors and SoCs. In this article, we describe our work on hardware virtualization support in the RISC-V CVA6 core. Our contribution is multifold and encompasses architecture, microarchitecture, and design space exploration. In particular, we highlight the design of a set of microarchitectural enhancements (i.e., G-Stage Translation Lookaside Buffer (GTLB), L2 TLB) to alleviate the virtualization performance overhead. We also perform a Design Space Exploration (DSE) and accompanying post-layout simulations (based on 22nm FDX technology) to assess Performance, Power ,and Area (PPA). Further, we map design variants on an FPGA platform (Genesys 2) to assess the functional performance-area trade-off. Based on the DSE, we select an optimal design point for the CVA6 with hardware virtualization support. For this optimal hardware configuration, we collected functional performance results by running the MiBench benchmark on Linux atop Bao hypervisor for a single-core configuration. We observed a performance speedup of up to 16% (approx. 12.5% on average) compared with virtualization-aware non-optimized design at the minimal cost of 0.78% in area and 0.33% in power. Finally, all work described in this article is publicly available and open-sourced for the community to further evaluate additional design configurations and software stacks
    • …
    corecore