6,304 research outputs found

    Determining what people feel and think when interacting with humans and machines

    Get PDF
    Any interactive software program must interpret the users’ actions and come up with an appropriate response that is intelligable and meaningful to the user. In most situations, the options of the user are determined by the software and hardware and the actions that can be carried out are unambiguous. The machine knows what it should do when the user carries out an action. In most cases, the user knows what he has to do by relying on conventions which he may have learned by having had a look at the instruction manual, having them seen performed by somebody else, or which he learned by modifying a previously learned convention. Some, or most, of the times he just finds out by trial and error. In user-friendly interfaces, the user knows, without having to read extensive manuals, what is expected from him and how he can get the machine to do what he wants. An intelligent interface is so-called, because it does not assume the same kind of programming of the user by the machine, but the machine itself can figure out what the user wants and how he wants it without the user having to take all the trouble of telling it to the machine in the way the machine dictates but being able to do it in his own words. Or perhaps by not using any words at all, as the machine is able to read off the intentions of the user by observing his actions and expressions. Ideally, the machine should be able to determine what the user wants, what he expects, what he hopes will happen, and how he feels

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Cohousing IoT:Technology Design for Life In Community

    Get PDF
    This paper presents a research-through-design project to develop and interpret speculative smart home technologies for cohousing communities—Cohousing IoT. Fieldwork at multiple sites coupled to a constructive design research process led to three prototypes designed for cohousing communities: Cohousing Radio, Physical RSVP, and Participation Scales. These were brought back to the communities that inspired them as a form of evaluation, but also to generate new understandings of designing for cohousing. In discussing how they understand these prototypes, this paper offers an account of how research though design generates knowledge that is specific to the conditions and issues that matter to communities. This contributes to design research more broadly in two ways. First, it demonstrates how contemporary ideas of smart home technology are or could be made relevant to broader ways of living in the future. Second, it provides an example of how a design research process can serve to uncover community values, issues, and goals

    A Survey on Emotion Recognition for Human Robot Interaction

    Get PDF
    With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined
    corecore